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Bipolarity highlights the positive and negative facets of a certain dilemma. Thisscript aims to propose a novel multi-criteria decision-making (MCDM) approachbased on bipolar fuzzy preference δ-covering based bipolar fuzzy rough set(BFPδC-BFRS) model by combining the VIKOR (VIseKriterijumska Optimizacija IKompromisno Rasenje) scheme. The VIKOR scheme is viewed as a beneficialMCDM strategy, particularly in situations where an expert is incapable of mak-ing the right decision at the beginning of system design. The VIKOR methodworks well for problems with competing attributes because it operates underthe presumptions that compromise is acceptable in conflict resolution, the ex-pert seeks a solution that is extremely close to the best, and all developed at-tributes are taken into consideration when processing the various alternatives. Inthis study, firstly, we proposed an integrated MCDM based on BFPδC-BFRSs us-ing the VIKOR methodology. Moreover, we solve a real-world illustration to showthe effectiveness of the expanded VIKOR approach. Finally, we demonstrate adetailed comparative analysis of the proposed methodology with some preva-lent decision-making approaches to substantiate the accountability of the rec-ommended scheme.Keywords:Rough set; Bipolar fuzzy preferencerelation; BFPδC-BFRSs; Decision-making.

1. Introduction
The actual world is full of indeterminacy and uncertainty. Rather than dealing with specific prob-lems, we typically deal with ambiguous ones. The success of traditional techniques is not always guar-anteed because of the inherent uncertainties in these issues. Zadeh [1] promulgated the paradigmof the fuzzy set (FS), which unlocked the avenues for scholars to combat the uncertainty of data. FStheory relies on membership function (MF), which permits us to assess the membership grade (MG)of an item regarding a set. The bigger the MG, the higher the association of that item to the relatedset. Many remarkable applications of FSs can be seen in [2–5].
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It has been acknowledged that RS theory [6, 7] is a useful mathematical approach to managingintelligent systems that display ambiguity and uncertainty. The effectiveness of this comparativelyemerging soft computing tool has been effectively demonstrated and leveraged in a variety of fields,including pattern recognition, conflict resolution, knowledge discovery, data mining, image process-ing, medical science, neural networks, and so forth. It has garnered a lot of attention in recent years.The indiscernibility relation between arbitrary items is described by equivalence relation (ER), the cen-tral and fundamental idea of the RS theory. Although RS theory has been effectively utilized in manyareas, certain issues might lead the theory’s application scope to be limited. These flaws could be theconsequence of inaccurate knowledge of the items being evaluated. It might be difficult to find anER with a piece of incomplete information. Consequently, RS models have developed several fasci-nating generalizations under various circumstances in recent years, such as an RS based on tolerancerelations [8], RS based on neighbourhood operators [9], fuzzy rough set (FRS) [10], rough fuzzy set(RFS) model [11], dominance-based RSs [12], variable precision RS [13], covering-based RSs [14] andgrey tolerance RS [15].It is critical to keep in mind that everything has two aspects and that fuzziness and bipolarity areinnate characteristics of human perception. Cognitive psychology research indicates that bipolar rea-soning is essential to human cognition actions. The areas of the brain responsible for positive andnegative impacts do not appear to be situated there. Experts in a variety of fields have noted the im-portance of bipolarity, including database querying, decision-making, and categorization. Fuzzinessand bipolarity are two separate but correlative concepts intended to mimic certain facets of humancognition. The latter emphasizes the polarity and importance of the facts, whereas the former concen-trates on linguistic imprecision. Recent research has consistently demonstrated the great importanceof two concepts. In light of this, Zhang [16] postulated bipolar FSs (BFSs) as an extension of FSs withan MG lies in [−1, 1]. An object’s MG of ”0” indicates that it does not pertain to the associated prop-erty; an object’s MG of (0, 1]means that it partially fulfils the property; and an object’s MG of [−1, 0)signifies that it partially satisfies the implicit counter-property. BFS theory has been widely applied tosolve practical issues. Additionally, several initiatives have been undertaken to integrate RS and BFStheories. Han et al. [17] devised a bipolar-valued RFS version with application in decision analysis.Yang et al. [18] recommended a bipolar FRS model on dual universes. AnMCDM technique employinginterval-valued bipolar fuzzy information was first introduced by Wei et al. [19]. Ali et al. [20] studiedattribute reductions of bipolar fuzzy relation (BFR). By using the (α, β)-indiscernibility of a BFR, Guland Shabir [21] proposed a unique method for the roughness of a crisp set. A bipolar FRS model withinconsistent bipolarity in two universes was proposed by Han et al. [22]. Jana and Pal [23] studied arobust bipolar fuzzy EDAS scheme. Malik and Shabir [24] launched a consensus approach via roughBFSs. Luo and Hu [25] integrated a bipolar three-way decision scheme with applicability in analyzingincomplete information. Recently, Gul et al.[26] devised a bipolar fuzzy preference δ-covering basedbipolar FRS (BFPδC-BFRS) model and corresponding decision-making applications.In light of the literature mentioned above, we observed that a plethora of researchers put forwardseveral hybrid models of RSs, FS, and BFSs. However, to the best of our knowledge, no prior investi-gation has been conducted into the hybridization of VIKOR methodology and BFPδC-BFRS model. Tobridge this knowledge gap, in this study, we studied an extension of the VIKOR scheme for MCDMunder the BFPδC-BFRS model.The rest of this study is systematized as follows: In Section 2, we revisit some rudimentary ideaslinked to FSs, BFSs, and RSs. In Section 3, we first proposed an integratedMCDM scheme based on theBFPδC-BFRS model and the VIKOR approach. Besides, an algorithm for MCDM is also elaborated. InSection 4, an applied example of decision-making using bipolar fuzzy information is provided. In Sec-tion 5, we perform a comparative study of our projected methodology with other prevailing schemes.Section 6 provides conclusions.
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2. Preliminaries
In this segment, we review numerous essential terminologies which will be utilized in our study.

Definition 2.1 [6] An ordered pair (Υ, σ) is named as an approximation space, where Υ is a non-void
finite set andσ is an ER overΥ. ForH ⊆ Υ,Hmay ormay not be stated as a union of some equivalence
classes of σ. If it is possible to expressH as the latter, then it is named definable; if not, it is an RS. If
H is an RS, then it can be approximated as:

σ∗(H) =
{
ε ∈ Υ : [ε]σ ⊆ H

}
,

σ∗(H) =
{
ε ∈ Υ : [ε]σ ∩H ≠ ∅

}
,

}
(1)

which are referred to as lower and upper approximations ofH, respectively, where

[ε]σ =
{
ε′ ∈ Υ : (ε, ε′) ∈ σ

}
. (2)

Further, the set
Bndσ(H) = σ∗(H)− σ∗(H) (3)

is called the boundary region of H in Υ. Obviously, H is definable if σ∗(H) = σ∗(H). H is a RS if
σ∗(H) ̸= σ∗(H).

Definition 2.2 [1] A FS 𭟋 on Υ is a function 𭟋 : ℧ −→ [0, 1]. The value 𭟋(ε) of 𭟋 for ε ∈ Υ signifies
the MG of ε in𭟋.

Definition 2.3 [16] A BFSΨ overΥ is postulated as:

Ψ =
{〈

ε,Ψ+(ε),Ψ−(ε)
〉
: ε ∈ Υ

}
, (4)

where Ψ+ : Υ −→ [0, 1] and Ψ− : Υ −→ [−1, 0] are said to be positive MG (PMG) and negative MG
(NMG), respectively. The PMG reveals the satisfaction degree of an item ε to the property, and the
NMG demonstrates the satisfaction degree of ε to some implicit counter-property related to a BFSΨ.

From now on, the assembling of all BFSs overΥ is denoted by BF(Υ).
Definition 2.4 [16] LetΨ,Γ ∈ BF(Υ). Then ∀ε ∈ Υ,

1. Ψ ⊆ Γ ⇔ Ψ+(ε) ≤ Γ+(ε) andΨ−(ε) ≥ Γ−(ε);

2. Ψ = Γ ⇔ Ψ+(ε) = Γ+(ε) andΨ−(ε) = Γ−(ε);

3. (Ψ ∩ Γ)(ε) =
{
Ψ+(ε) ∧ Γ+(ε),Ψ−(ε) ∨ Γ−(ε)

}
;

4. (Ψ ∪ Γ)(ε) =
{
Ψ+(ε) ∨ Γ+(ε),Ψ−(ε) ∧ Γ−(ε)

}
;

5. Ψc(ε) =
{
1−Ψ+(ε),−1−Ψ−(ε)

}
.

Definition 2.5 [16] A BFR B overΥ is a BFS overΥ×Υ. Thus, it may be formulated as:

B =
{〈

(x′, y′), µ+
B (x

′, y′), µ−
B (x

′, y′)
〉
: (x′, y′) ∈ Υ×Υ

}
, (5)

where µ+
B : Υ×Υ −→ [0, 1] and µ−

B : Υ×Υ −→ [−1, 0].
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Recently, Gul et al. [26] generated the paradigm of bipolar fuzzy preference relation (BFPR) alongwith its core features.

Definition 2.6 [26] A BFPRB is a BFS overΥ×Υ, which is expressed by its positive and negative MFs
given as µ+

B : Υ×Υ −→ [0, 1] and µ−
B : Υ×Υ −→ [−1, 0]. ForΥ = {♭1, ♭2, · · · , ♭n}, we can denote

it as:

B =
[
⟨aij, bij⟩

]
n×n

=



♭1 ♭2 · · · ♭n

♭1 ⟨a11, b11⟩ ⟨a12, b12⟩ · · · ⟨a1n, b1n⟩

♭2 ⟨a21, b21⟩ ⟨a22, b22⟩ · · · ⟨a2n, b2n⟩
...

... . . . ...

♭n ⟨an1, bn1⟩ ⟨an2, bn2⟩ · · · ⟨ann, bnn⟩


,

where ⟨aij, bij⟩ indicates the bipolar fuzzy preference degree (BFPD) of xi over xj , aij ∈ [0, 1], bij ∈
[−1, 0]. Further, aij and bij fulfills the constraints, aij + aji = 1, bij + bji = −1, aii = 0.5 and bii =
−0.5 ∀i, j = 1, 2, · · · , n. Specially,

• aij = 0.5, bij = −0.5 indicates indifference between ♭i and ♭j;

• aij > 0.5, bij > −0.5 reveals that ♭i is better than ♭j;

• aij < 0.5, bij < −0.5 signifies that ♭j is better than ♭i;

• aij = 1, bij = 0 suggests that ♭i is absolutely better than ♭j;

• aij = 0, bij = −1means ♭j is absolutely better than ♭i.

Definition 2.7 [26] ABFPRB =
[
⟨aij, bij⟩

]
n×n

is termedas anadditive consistent, if∀i, j, k ∈ {1, 2, · · · , n}
the following conditions hold:

1. aij = aik − ajk + 0.5,

2. bij = bik − bjk + 0.5.

Definition 2.8 [26] Let Υ = {♭i : i = 1, 2, · · · , n} be the universe of n items and C = {Ck : k =
1, 2, · · · ,m} be a finite collection of m criteria. Let f : Υ × C −→ [0, 1] be a fuzzy MF and g :
Υ× C −→ [−1, 0] be a fuzzy non-membership function. Then, we postulate the transfer functions to
determine the BFPD of any two items ♭i, ♭j ∈ Υ regarding the criterion Ck as follows:

aCk
ij =

f(♭i, Ck)− f(♭j, Ck) + 1

2
, (6)

bCk
ij =

g(♭j, Ck)− g(♭i, Ck)− 1

2
. (7)

For a BFPR BCk
(♭i, ♭j) =

[〈
aCk
ij , b

Ck
ij

〉]
n×n

, the transfer functions (6) and (7) satisfied the following
characteristics for all ♭i, ♭j, ♭k ∈ Υ:
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1. aCk

ii = 0.5 and bCk
ii = −0.5.

2. aCk
ij + aCk

ji = 1 and bCk
ij + bCk

ji = −1.

3. aCk
ij + aCk

jℓ = aCk
iℓ + 0.5 and bCk

ij + bCk
jℓ = bCk

iℓ − 0.5.

Table 1 illustrates a bipolar fuzzy matrix, where Υ = {♭i : i = 1, 2, · · · , 5} and C = {C1, C2}.Based on criteria C1 and C2, we can construct the BFPRs of alternative ♭i to the alternative ♭j(i, j =

Table 1Bipolar fuzzy matrix
Υ/C C1 C2

x1 (0.5, - 0.25) (0.8, - 0.7)
x2 (0.25, - 0.8) (0.9, - 0.4)
x3 (0.33, - 0.25) (0.75, - 0.4)
x4 (0.65, - 0.6) (0.3, - 0.75)
x5 (1, - 0.5) (0.4, - 0.35)

1, 2, · · · , 5) by employing formulas (6) and (7), we acquired:

BC1(♭i, ♭j) =



⟨0.500,−0.500⟩ ⟨0.625,−0.775⟩ ⟨0.585,−0.500⟩ ⟨0.425,−0.675⟩ ⟨0.250,−0.625⟩

⟨0.375,−0.225⟩ ⟨0.500,−0.500⟩ ⟨0.460,−0.225⟩ ⟨0.300,−0.400⟩ ⟨0.125,−0.350⟩

⟨0.415,−0.500⟩ ⟨0.540,−0.775⟩ ⟨0.500,−0.500⟩ ⟨0.340,−0.675⟩ ⟨0.165,−0.625⟩

⟨0.575,−0.325⟩ ⟨0.700,−0.600⟩ ⟨0.660,−0.325⟩ ⟨0.500,−0.500⟩ ⟨0.325,−0.450⟩

⟨0.750,−0.375⟩ ⟨0.875,−0.650⟩ ⟨0.835,−0.375⟩ ⟨0.675,−0.550⟩ ⟨0.500,−0.500⟩


,

(8)

BC2(♭i, ♭j) =



⟨0.500,−0.500⟩ ⟨0.450,−0.350⟩ ⟨0.525,−0.350⟩ ⟨0.750,−0.525⟩ ⟨0.700,−0.325⟩

⟨0.550,−0.650⟩ ⟨0.500,−0.500⟩ ⟨0.575,−0.500⟩ ⟨0.800,−0.675⟩ ⟨0.750,−0.475⟩

⟨0.475,−0.650⟩ ⟨0.425,−0.500⟩ ⟨0.500,−0.500⟩ ⟨0.725,−0.675⟩ ⟨0.675,−0.475⟩

⟨0.250,−0.475⟩ ⟨0.200,−0.325⟩ ⟨0.275,−0.325⟩ ⟨0.500,−0.500⟩ ⟨0.450,−0.300⟩

⟨0.300,−0.675⟩ ⟨0.250,−0.525⟩ ⟨0.325,−0.525⟩ ⟨0.550,−0.700⟩ ⟨0.500,−0.500⟩


.

(9)

Definition 2.9 [26] The bipolar fuzzy preference classes (BFPCs) of an item xi ∈ Υ induced by a BFPR
BCk

(xi, xj) =
[〈
aCk
ij , b

Ck
ij

〉]
n×n

is portrayed as:

[xi]BCk
=

〈
aCk
i1 , b

Ck
i1

〉
x1

+

〈
aCk
i2 , b

Ck
i2

〉
x2

+ · · ·+
〈
aCk
in , b

Ck
in

〉
xn

. (10)

The BFPRBCk
produces a collection of bipolar fuzzy information granules from the universe, which

constitutes the bipolar fuzzy preference granular structure described as follows:

P
(
BCk

)
=

{
[x1]BCk

, [x2]BCk
, · · · , [xn]BCk

}
.
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Gul et al. [26] implemented the formulas (6) and (7) to originate the conception of bipolar fuzzypreference δ-neighborhood (BFPδ-nghd) in aBFPδC-approximation space (BFPδC-AS) and exam-ined its associated features. Eventually, they design an innovative BFPδC-BFRS variant via BFPδ-nghd.

Definition 2.10 [26] Presume Υ be a non-void finite universe and P
(
BCk

)
be a bipolar fuzzy prefer-

ence granular structure. Then for every δ = ⟨α, β⟩ ∈ (0, 1] × [−1, 0), we name P
(
BCk

)
a BFPδC

ofΥ, when ( n⋃
i,j=1

aCk
ij

)
(x) ≥ α and

( n⋂
i,j=1

bCk
ij

)
(x) ≤ β, ∀ x ∈ Υ. (11)

Furthermore, the pair
(
℧, P

(
BCk

))
is termed a BFPδC-AS.

Definition 2.11 [26] Let
(
℧, P

(
BCk

))
be a BFPδC-AS. For each x ∈ Υ, we characterize the BFPδ-

nghd ℵδ
x of x as:

ℵδ
x =

〈
ℵα
x ,ℵβ

x

〉
, (12)

where,
ℵα
x =

∧{
[xi]BCk

: aCk
ij ≥ α

}
, (13)

and
ℵβ
x =

∨{
[xi]BCk

: bCk
ij ≤ β

}
. (14)

Definition 2.12 [26] Assume that
(
Υ, P

(
BCk

))
be a BFPδC-AS and δ = ⟨α, β⟩ ∈ (0, 1] × [−1, 0).

The BFPδC lower and upper approximations of a BFS Ψ =
〈
Ψ+,Ψ−〉 in Υ regarding

(
℧, P

(
BCk

))
are respectively postulated as:

BFC(Ψ) =
〈(

Ψ+
)
(x)

C
,
(
Ψ−)(x)

C

〉
,

BFC(Ψ) =
〈(

Ψ+
)
(x)

C
,
(
Ψ−

)
(x)

C

〉
,

 (15)
where, (

Ψ+
)
(x)

C
=

∧
y∈Υ

{(
1− Cℵα

x(y)
)
∨Ψ+(y)

}
,

(
Ψ−)(x)

C
=

∨
y∈Υ

{
Cℵβ

x(y) ∧Ψ−(y)

}
,

(
Ψ+

)
(x)

C
=

∨
y∈Υ

{
Cℵα

x(y) ∧Ψ+(y)

}
,

(
Ψ−

)
(x)

C
=

∧
y∈Υ

{(
− 1− Cℵβ

x(y)
)
∨Ψ−(y)

}
, for every x ∈ Υ.



(16)

IfBFC(Ψ) ̸= BFC(Ψ), thenΨ is named BFPδC-BFRS; else,Ψ is termed a bipolar fuzzy definable.

3. An Integrated MCDM Using BFPδC-BFRS Model and VIKOR
In the current segment, we introduced a novel MCDM strategy by unifying the BFPδC- BFRS modeland the VIKOR scheme.Consider a collection Υ = {xi : i = 1, 2, · · · , n} of n items and C = {Ck : k = 1, 2, · · · ,m}be a collection of m criteria that are decided by a decision expert. The associated weight vector of
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all criteria is signified by W = (ℏ1, ℏ2, · · · , ℏm)T such that 0 ≤ ℏj ≤ 1 and m∑
j=1

ℏj = 1. Let the BFS
Ψ =

{〈
x,Ψ+(x),Ψ−(x)

〉
: x ∈ Υ

} overΥ be the description of all items by the expert. LetE signify afinite set of the domain for the information functions f(xℓ, Ck) and g(xℓ, Ck), where f(xℓ, Ck) ∈ [0, 1]stands for the PMG of xℓ w.r.t. Ck given by the expert and g(xℓ, Ck) ∈ [−1, 0] stands for the NMG of
xℓ w.r.t. Ck given by the expert. The BFPC [xi]BCk

(xj) stands for the efficacy value of xj ’s w.r.t. Ck. Fora critical value δ = ⟨α, β⟩ ∈ (0, 1]× [−1, 0), let for each xi ∈ Υ, there is at least one criteria Ck ∈ Csuch that the efficacy value of xj for the criteriaCk is not less than α and greater than β, and P(
BCk

)
is a BFPδC ofΥ. Then the BFPδ-nghd ℵδ

xj
of xj regarding Ck is a BFS described as:

Ckℵδ
xj
(xr) =

[∧{
aCk
ij : aCk

ij ≥ α
}
,
∨{

bCk
ij : bCk

ij ≤ β
}]

(xr); r = 1, 2, · · · , n, (17)
which yields the minimum of all efficacy values for each xr w.r.t. Ck.IfΨ =

{〈
xi,Ψ

+(xi),Ψ
−(xi)

〉
: xi ∈ Υ

}
∈ BF(Υ) represent PMG and NMG of each xi ∈ Υ givenby the expert. The decision-making for the MCDM problem is how to select an optimal alternativeamong all. We denote the bipolar fuzzy information system (Υ, C,W,E).

3.1 Decision-making Methodology

The recommended method has subsequent steps.
Step 1: Assume that the decision-maker furnish his/her assessment of the alternativesxi regarding eachcriterion Ck by considering bipolar fuzzy numbers as xik =

〈
Ψ+

k (xi),Ψ
−
k (xi)

〉, where the PMG
Ψ+

k (xi) signifies the satisfaction degree of alternatives xi to the criteriaCk and the NMGΨ−
k (xi)denotes the satisfaction degree of the alternatives xi to some counter property of the criteria

Ck. Formally, a bipolar fuzzy MCDM problem can be represented by an n×mmatrix as follows:
D =

[〈
Ψ+

k (xi),Ψ
−
k (xi)

〉]
n×m

. (18)
Step 2: Compute BFPRsBCk

; k = 1, 2, · · · ,m using formulas (6) and (7), respectively.
Step 3: Determine the BFPCs [xi]BCk

of alternatives xi induced by each BFPR.
Step 4: Construct the BFPδ-nghds Ckℵδ

xi
=

〈
Ckℵα

xi
, Ckℵβ

xi

〉 of alternatives xi corresponding to each
critria Ck by using Definition 2.11.

Step 5: All the individual BFPδ-nghds can be transformed into a final aggregated BFPδ-nghd, which isgiven as:
Ñ δ

xi
=

〈
Ñ α

xi
, Ñ β

xi

〉
, (19)

where
Ñ α

xi
=

∑m
k=1

Ckℵα
xi

m
, (20)

and
Ñ β

xi =

∑m
k=1

Ckℵβ
xi

m
. (21)
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Step 6: According to Eq. (18), the best value f♠

k =
〈
f♠
k

+
, f♠

k

−〉 and the worst value f⋆
k =

〈
f⋆
k

+
, f⋆

k

−〉
can be determine against each criteria Ck as follows:

f♠
k =

〈
f♠
k

+
, f♠

k

−〉
=

{〈 n∨
i=1

Ψ+
k (xi),

n∧
i=1

Ψ−
k (xi)

〉
: k = 1, 2, · · · ,m

}
, (22)

f⋆
k =

〈
f⋆
k

+
, f⋆

k

−〉
=

{〈 n∧
i=1

Ψ+
k (xi),

n∨
i=1

Ψ−
k (xi)

〉
: k = 1, 2, · · · ,m

}
. (23)

Step 7: Calculate the maximum group utility value Si =
(
SP
i ,SN

i

) and the minimum individual regretvalueRi =
(
RP

i ,RN
i

) as follows:
SP
i =

n∑
k=1

ℏk
d
(
f♠
k

+
,Ψ+

k (xi)
)

d
(
f♠
k

+
, f⋆

k

+
) , (24)

SN
i =

n∑
k=1

ℏk
d
(
Ψ−

k (xi), f
⋆
k

−)
d
(
f⋆
k

−
, f♠

k

−
) (25)

and
RP

i =
∨
i

ℏk
d
(
f♠
k

+
,Ψ+

k (xi)
)

d
(
f♠
k

+
, f⋆

k

+
)

 , (26)

RN
i =

∧
i

ℏk
d
(
Ψ−

k (xi), f
⋆
k

−)
d
(
f⋆
k

−
, f♠

k

−
)

 . (27)

Step 8: Further, bymeans of Definition 2.12, find theBFPδC lower and upper approximations of utility
measure and regretmeasurew.r.t. final aggregated BFPδ-nghd Ñ δ

xi
, which are respectively givenas:

(
SP
i

)
(x) =

∧
y∈Υ

{(
1− Ñ α

xi
(y)

)
∨ SP

i (y)

}
,

(
SN
i

)
(x) =

∨
y∈Υ

{
Ñ β

xi(y) ∧ SN
i (y)

}
,

(
SP
i

)
(x) =

∨
y∈Υ

{
Ñ α

xi
(y) ∧ SP

i (y)

}
,

(
SN
i

)
(x) =

∧
y∈Υ

{(
− 1− Ñ β

xi(y)
)
∨ SN

i (y)

}
, for every x ∈ Υ.



(28)

And
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(
RP

i

)
(x) =

∧
y∈Υ

{(
1− Ñ α

xi
(y)

)
∨RP

i (y)

}
,

(
RN

i

)
(x) =

∨
y∈Υ

{
Ñ β

xi(y) ∧RN
i (y)

}
,

(
RP

i

)
(x) =

∨
y∈Υ

{
Ñ α

xi
(y) ∧RP

i (y)

}
,

(
RN

i

)
(x) =

∧
y∈Υ

{(
− 1− Ñ β

xi(y)
)
∨RN

i (y)

}
, for every x ∈ Υ.



(29)

Step 9: Next, by utilizing theBFPδC lower and upper approximations of Si andRi, we find the lowerand upper approximation vectors as follows:
Si = SP

i ⊕ SN
i , (30)

Si = SP
i ⊕ SN

i , (31)
Ri = RP

i ⊕RN
i , (32)

Ri = RP
i ⊕RN

i , (33)

Step 10: Find the values of S ′
i andR′

i by using the following formulas:

S ′
i = Si ⊕ Si, (34)

R′
i = Ri ⊕Ri. (35)

Afterward, we determine the compromise Qi for each alternatives by using the following for-mula:
Qi = γ

(
S ′
i − S∗

S− − S∗

)
+ (1− γ)

(
R′

i −R∗

R− −R∗

)
, (36)

where
S∗ =

n∧
i=1

S ′
i, S− =

n∨
i=1

S ′
i, R∗ =

n∧
i=1

R′
i, R− =

n∨
i=1

R′
i;

and γ is served as a weight for the strategy of maximum group utility, while 1 − γ is the weight ofindividual regret and its value falls in [0, 1]. These strategies could be compromised (consensus) by
γ = 0.5. The compromise solution can be chosen by majority γ > 0.5 and veto γ < 0.5.The items are ranked by arranging the values of S ′

i,R′
i, andQi in ascending order. The outcomesare three ranking lists w.r.t. the values of S ′

i, R′
i, and Qi, which are further used to propose thecompromise solution of alternatives. The term Qi is the separation measure of alternative xi fromthe optimal alternative, which shows that the minimum value ofQ indicates the optimal alternative.Lastly, we choose the optimal alternative x1 as a compromise solution if the following two con-straints are fulfilled:
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Condition I (Tolerable advantage)

The first condition is illustrated as:
Q
(
x(2)

)
−Q

(
x(1)

)
≥ 1

n− 1
, (37)

where x(1) and x(2) are high ranked two alternatives inQi and n is the number of alternatives.
Condition II (Tolerable stability)

In this condition the alternative x(1) should also best ranked alternative in S ′
i andR′

i.If the above two conditions do not hold together, then there are many compromise solutions,which are attained as follows:
1. If the only condition II is not fulfilled then the set of compromise solutions comprises alternatives

x(1) and x(2).
2. If the only condition I is not satisfied then the compromise solution consists of alternatives

x(1), x(2), · · · , x(N), where x(N) is determine by the relation:
Q
(
x(N)

)
−Q

(
x(1)

)
<

1

n− 1
; for maximumN. (38)

In light of the above discussion, the procedure of the devised VIKORmethod under the BFPδC-BFRSmodel is portrayed in the following algorithm. Moreover, Figure 1 depicts the graphical illustration ofthe recommended MCDMmechanism.
Algorithm 1: An algorithm for the MCDM problem
Input: Bipolar fuzzy information system (Υ, C,W, E).Output: A ranking result of all alternatives.Step 1: DetermineBCk

; k = 1, 2, · · · ,m using formulation exhibited in Eqs. (6) and (7).Step 2: Compute [xi]BCk
of xi regarding Ck.

Step 3: Compute Ckℵδ
xi
=

〈
Ckℵα

xi
, Ckℵβ

xi

〉 of xi regarding Ck.
Step 4: Determine aggregated BFPδ-nghd Ñ δ

xi
using Eqs. (19), (20) and (21).Step 5: Compute the best and the wrest values against each criterion Ck according to Eqs.(22) and (23).Step 6: Calculate Si =

(
SP
i ,SN

i

) andRi =
(
RP

i ,RN
i

) according to Eqs. (24), (25), (26) and(27).Step 7: Find the BFPδC lower and upper approximations of Si andRi w.r.t. Ñ δ
xi
using Eqs.(28) and (29).Step 8: Calculate the lower and upper approximation vectors.Step 9: Compute the values of S ′

i,R′
i andQi according to Eq. (36).Step 10: Rank the items in terms of S ′
i,R′

i andQi.

4. Application of the Proposed VIKOR Approach
In this part, a real-world decision-making issue employing bipolar fuzzy information has been uti-lized to analyze the developed approach.
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Fig. 1. Flowchart portrayal of the projected of the approach
Imagine a decision-maker who is having trouble choosing between the five smartphones that areon display for sale in a store. Since it is well known that each feature influences the price and useful-ness of the desired smartphone, let’s presume that he is concentrating on the subsequent features(criteria) to choose the finest smartphone: colour, memory, elegancy, and camera zoom. Therefore,the attributes listed above stand in for the requirements in our MCDM issue, and these smartphonesrepresent the alternatives.Let C = {C1, C2, C3, C4} be the set of concerned features, and Υ = {x1, x2, x3, x4, x5} bethe collection of concerned smartphones. All the criteria weights are provided as follows: W =

(0.25, 0.3, 0.25, 0.2)T . Table 2 shows the alternatives’ ratings according to the criteria.
Table 2Bipolar fuzzy information system

Υ/C C1 C2 C3 C4

x1 (0.5, - 0.25) (0.8, - 0.7) (0.3, - 0.1) (0.6, - 0.6)
x2 (0.2, - 0.8) (0.9, - 0.4) (0.6, - 0.3) (0.55, - 0.5)
x3 (0.33, - 0.25) (0.75, - 0.4) (0.25, - 0.7) (0.3, - 0.1)
x4 (0.65, - 0.6) (0.3, - 0.75) (0.8, - 0.35) (0.65, - 0.7)
x5 (1, - 0.5) (0.4, - 0.35) (0.2, - 0.6) (0.25, - 0.65)

The following computation phases are displayed to help choose the best smartphone:
Step 1: Based on criteria C1, C2, C3, C4 and according to formulas (6) and (7) to compute the BFPRs of
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alternative xi to the alternative xj(i, j = 1, 2, · · · , 5), we get:

BC1(xi, xj) =



⟨0.500,−0.500⟩ ⟨0.650,−0.775⟩ ⟨0.585,−0.500⟩ ⟨0.425,−0.675⟩ ⟨0.250,−0.625⟩

⟨0.350,−0.225⟩ ⟨0.500,−0.500⟩ ⟨0.435,−0.225⟩ ⟨0.275,−0.400⟩ ⟨0.100,−0.350⟩

⟨0.415,−0.500⟩ ⟨0.565,−0.775⟩ ⟨0.500,−0.500⟩ ⟨0.340,−0.675⟩ ⟨0.165,−0.625⟩

⟨0.575,−0.325⟩ ⟨0.725,−0.600⟩ ⟨0.660,−0.325⟩ ⟨0.500,−0.500⟩ ⟨0.325,−0.450⟩

⟨0.750,−0.375⟩ ⟨0.900,−0.650⟩ ⟨0.835,−0.375⟩ ⟨0.675,−0.550⟩ ⟨0.500,−0.500⟩


,

(39)

BC2(xi, xj) =



⟨0.500,−0.500⟩ ⟨0.450,−0.350⟩ ⟨0.525,−0.350⟩ ⟨0.750,−0.525⟩ ⟨0.700,−0.325⟩

⟨0.550,−0.650⟩ ⟨0.500,−0.500⟩ ⟨0.575,−0.500⟩ ⟨0.800,−0.675⟩ ⟨0.750,−0.475⟩

⟨0.475,−0.650⟩ ⟨0.425,−0.500⟩ ⟨0.500,−0.500⟩ ⟨0.725,−0.675⟩ ⟨0.675,−0.475⟩

⟨0.250,−0.475⟩ ⟨0.200,−0.325⟩ ⟨0.275,−0.325⟩ ⟨0.500,−0.500⟩ ⟨0.450,−0.300⟩

⟨0.300,−0.675⟩ ⟨0.250,−0.525⟩ ⟨0.325,−0.525⟩ ⟨0.550,−0.700⟩ ⟨0.500,−0.500⟩


,

(40)

BC3(xi, xj) =



⟨0.500,−0.500⟩ ⟨0.350,−0.600⟩ ⟨0.525,−0.800⟩ ⟨0.250,−0.625⟩ ⟨0.550,−0.750⟩

⟨0.650,−0.400⟩ ⟨0.500,−0.500⟩ ⟨0.675,−0.700⟩ ⟨0.400,−0.525⟩ ⟨0.700,−0.650⟩

⟨0.475,−0.200⟩ ⟨0.325,−0.300⟩ ⟨0.500,−0.500⟩ ⟨0.225,−0.325⟩ ⟨0.525,−0.450⟩

⟨0.750,−0.375⟩ ⟨0.600,−0.475⟩ ⟨0.775,−0.675⟩ ⟨0.500,−0.500⟩ ⟨0.800,−0.625⟩

⟨0.450,−0.250⟩ ⟨0.300,−0.350⟩ ⟨0.475,−0.550⟩ ⟨0.200,−0.375⟩ ⟨0.500,−0.500⟩


,

(41)

BC4(xi, xj) =



⟨0.500,−0.500⟩ ⟨0.525,−0.450⟩ ⟨0.650,−0.250⟩ ⟨0.475,−0.550⟩ ⟨0.675,−0.525⟩

⟨0.475,−0.550⟩ ⟨0.500,−0.500⟩ ⟨0.625,−0.300⟩ ⟨0.450,−0.600⟩ ⟨0.650,−0.575⟩

⟨0.350,−0.750⟩ ⟨0.375,−0.700⟩ ⟨0.500,−0.500⟩ ⟨0.325,−0.800⟩ ⟨0.525,−0.775⟩

⟨0.525,−0.450⟩ ⟨0.550,−0.400⟩ ⟨0.675,−0.200⟩ ⟨0.500,−0.500⟩ ⟨0.700,−0.475⟩

⟨0.325,−0.475⟩ ⟨0.350,−0.425⟩ ⟨0.475,−0.225⟩ ⟨0.300,−0.525⟩ ⟨0.500,−0.500⟩


.

(42)

Step 2: The BFPCs [xi]BC1
, [xi]BC2

, [xi]BC3
and [xi]BC4

are respectively listed in Tables 3, 4, 5 and 6.
From Tables 3, 4, 5 and 6, we can observe that P (

BCk

)
=

{
[xi]BCk

: i = 1, 2, · · · , 5, k = 1, 2, 3, 4
} is

aBFPδC ofΥ (
δ = ⟨0.500,−0.500⟩

).
Step 3: Let δ = ⟨α, β⟩ = ⟨0.500,−0.500⟩ be the critical value. Then the elements Ckℵδ

xi
=

〈
Ckℵα

xi
, Ckℵβ

xi

〉
(i = 1, 2 · · · , 5, k = 1, 2, 3, 4) are displayed in Tables 7, 8, 9 and 10.

Step 4: The aggregated BFPδ-nghd Ñ δ
xi is given in Table 11 as follows:

Step 5: The best and the wrest values against each criteria Ck can be evaluated according to Eqs. (22) and (23),respectively, which are shown in Table 12.
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Table 3

The BFPSc [xi]BC1

[x1]BC1
[x2]BC1

[x3]BC1
[x4]BC1

[x5]BC1

x1 ⟨0.500,−0.500⟩ ⟨0.350,−0.225⟩ ⟨0.415,−0.500⟩ ⟨0.575,−0.325⟩ ⟨0.750,−0.375⟩

x2 ⟨0.650,−0.775⟩ ⟨0.500,−0.500⟩ ⟨0.565,−0.775⟩ ⟨0.725,−0.600⟩ ⟨0.900,−0.650⟩

x3 ⟨0.585,−0.500⟩ ⟨0.435,−0.225⟩ ⟨0.500,−0.500⟩ ⟨0.660,−0.325⟩ ⟨0.835,−0.375⟩

x4 ⟨0.425,−0.675⟩ ⟨0.275,−0.400⟩ ⟨0.340,−0.675⟩ ⟨0.500,−0.500⟩ ⟨0.675,−0.550⟩

x5 ⟨0.250,−0.625⟩ ⟨0.100,−0.350⟩ ⟨0.165,−0.625⟩ ⟨0.325,−0.450⟩ ⟨0.500,−0.500⟩

Table 4
The BFPCs [xi]BC2

[x1]BC2
[x2]BC2

[x3]BC2
[x4]BC2

[x5]BC2

x1 ⟨0.500,−0.500⟩ ⟨0.550,−0.650⟩ ⟨0.475,−0.650⟩ ⟨0.250,−0.475⟩ ⟨0.300,−0.675⟩

x2 ⟨0.450,−0.350⟩ ⟨0.500,−0.500⟩ ⟨0.425,−0.500⟩ ⟨0.200,−0.325⟩ ⟨0.250,−0.525⟩

x3 ⟨0.525,−0.350⟩ ⟨0.575,−0.500⟩ ⟨0.500,−0.500⟩ ⟨0.275,−0.325⟩ ⟨0.325,−0.525⟩

x4 ⟨0.750,−0.525⟩ ⟨0.800,−0.675⟩ ⟨0.725,−0.675⟩ ⟨0.500,−0.500⟩ ⟨0.550,−0.700⟩

x5 ⟨0.700,−0.325⟩ ⟨0.750,−0.475⟩ ⟨0.675,−0.475⟩ ⟨0.450,−0.300⟩ ⟨0.500,−0.500⟩

Table 5
The BFPCs [xi]BC3

[x1]BC3
[x2]BC3

[x3]BC3
[x4]BC3

[x5]BC3

x1 ⟨0.500,−0.500⟩ ⟨0.650,−0.400⟩ ⟨0.475,−0.200⟩ ⟨0.750,−0.375⟩ ⟨0.450,−0.250⟩

x2 ⟨0.350,−0.600⟩ ⟨0.500,−0.500⟩ ⟨0.325,−0.300⟩ ⟨0.600,−0.475⟩ ⟨0.300,−0.350⟩

x3 ⟨0.525,−0.800⟩ ⟨0.675,−0.700⟩ ⟨0.500,−0.500⟩ ⟨0.775,−0.675⟩ ⟨0.475,−0.550⟩

x4 ⟨0.250,−0.625⟩ ⟨0.400,−0.525⟩ ⟨0.225,−0.325⟩ ⟨0.500,−0.500⟩ ⟨0.200,−0.375⟩

x5 ⟨0.550,−0.750⟩ ⟨0.700,−0.650⟩ ⟨0.525,−0.450⟩ ⟨0.800,−0.625⟩ ⟨0.500,−0.500⟩

Table 6
The BFPCs [xi]BC4

[x1]BC4
[x2]BC4

[x3]BC4
[x4]BC4

[x5]BC4

x1 ⟨0.500,−0.500⟩ ⟨0.475,−0.550⟩ ⟨0.350,−0.750⟩ ⟨0.525,−0.450⟩ ⟨0.325,−0.475⟩

x2 ⟨0.525,−0.450⟩ ⟨0.500,−0.500⟩ ⟨0.375,−0.700⟩ ⟨0.550,−0.400⟩ ⟨0.350,−0.425⟩

x3 ⟨0.650,−0.250⟩ ⟨0.625,−0.300⟩ ⟨0.500,−0.500⟩ ⟨0.675,−0.200⟩ ⟨0.475,−0.225⟩

x4 ⟨0.475,−0.550⟩ ⟨0.450,−0.600⟩ ⟨0.325,−0.800⟩ ⟨0.500,−0.500⟩ ⟨0.300,−0.525⟩

x5 ⟨0.675,−0.525⟩ ⟨0.650,−0.575⟩ ⟨0.525,−0.775⟩ ⟨0.700,−0.475⟩ ⟨0.500,−0.500⟩

Step 6: The values of utility measure Si =
(
S+
i ,S−

i

) and regret measure Ri =
(
R+

i ,R
−
i

) are evaluated byusing Eqs. (24), (25), (26) and (27), respectively, and the outcomes are displayed in Table 13.
Step 7: Using Eqs. (28) and (29), the BFPδC lower and upper approximations of Si andRi regarding Ñ δ

xi
are
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Table 7

The BFPδ-nghd C1ℵδ
xi

C1ℵδ
x1

C1ℵδ
x2

C1ℵδ
x3

C1ℵδ
x4

C1ℵδ
x5

x1 ⟨0.500,−0.500⟩ ⟨0.350,−0.225⟩ ⟨0.415,−0.500⟩ ⟨0.575,−0.325⟩ ⟨0.750,−0.375⟩

x2 ⟨0.650,−0.775⟩ ⟨0.500,−0.500⟩ ⟨0.565,−0.775⟩ ⟨0.725,−0.600⟩ ⟨0.900,−0.650⟩

x3 ⟨0.585,−0.500⟩ ⟨0.435,−0.225⟩ ⟨0.500,−0.500⟩ ⟨0.660,−0.325⟩ ⟨0.835,−0.375⟩

x4 ⟨0.425,−0.675⟩ ⟨0.275,−0.400⟩ ⟨0.340,−0.675⟩ ⟨0.500,−0.500⟩ ⟨0.675,−0.550⟩

x5 ⟨0.250,−0.625⟩ ⟨0.100,−0.350⟩ ⟨0.165,−0.625⟩ ⟨0.325,−0.450⟩ ⟨0.500,−0.500⟩

Table 8
The BFPδ-nghd C2ℵδ

xi
C2ℵδ

x1

C2ℵδ
x2

C2ℵδ
x3

C2ℵδ
x4

C2ℵδ
x5

x1 ⟨0.500,−0.500⟩ ⟨0.550,−0.650⟩ ⟨0.475,−0.650⟩ ⟨0.250,−0.475⟩ ⟨0.300,−0.675⟩

x2 ⟨0.450,−0.350⟩ ⟨0.500,−0.500⟩ ⟨0.425,−0.500⟩ ⟨0.200,−0.325⟩ ⟨0.250,−0.525⟩

x3 ⟨0.525,−0.350⟩ ⟨0.575,−0.500⟩ ⟨0.500,−0.500⟩ ⟨0.275,−0.325⟩ ⟨0.325,−0.525⟩

x4 ⟨0.750,−0.525⟩ ⟨0.800,−0.675⟩ ⟨0.725,−0.675⟩ ⟨0.500,−0.500⟩ ⟨0.550,−0.700⟩

x5 ⟨0.700,−0.325⟩ ⟨0.750,−0.475⟩ ⟨0.675,−0.475⟩ ⟨0.450,−0.300⟩ ⟨0.500,−0.500⟩

Table 9
The BFPδ-nghd C3ℵδ

xi
C3ℵδ

x1

C3ℵδ
x2

C3ℵδ
x3

C3ℵδ
x4

C3ℵδ
x5

x1 ⟨0.500,−0.500⟩ ⟨0.650,−0.400⟩ ⟨0.475,−0.200⟩ ⟨0.750,−0.375⟩ ⟨0.450,−0.250⟩

x2 ⟨0.350,−0.600⟩ ⟨0.500,−0.500⟩ ⟨0.325,−0.300⟩ ⟨0.600,−0.475⟩ ⟨0.300,−0.350⟩

x3 ⟨0.525,−0.800⟩ ⟨0.675,−0.700⟩ ⟨0.500,−0.500⟩ ⟨0.775,−0.675⟩ ⟨0.475,−0.550⟩

x4 ⟨0.250,−0.625⟩ ⟨0.400,−0.525⟩ ⟨0.225,−0.325⟩ ⟨0.500,−0.500⟩ ⟨0.200,−0.375⟩

x5 ⟨0.550,−0.750⟩ ⟨0.700,−0.650⟩ ⟨0.525,−0.450⟩ ⟨0.800,−0.625⟩ ⟨0.500,−0.500⟩

Table 10
The BFPδ-nghd C4ℵδ

xi
C4ℵδ

x1

C4ℵδ
x2

C4ℵδ
x3

C4ℵδ
x4

C4ℵδ
x5

x1 ⟨0.500,−0.500⟩ ⟨0.475,−0.550⟩ ⟨0.350,−0.750⟩ ⟨0.525,−0.450⟩ ⟨0.325,−0.475⟩

x2 ⟨0.525,−0.450⟩ ⟨0.500,−0.500⟩ ⟨0.375,−0.700⟩ ⟨0.550,−0.400⟩ ⟨0.350,−0.425⟩

x3 ⟨0.650,−0.250⟩ ⟨0.625,−0.300⟩ ⟨0.500,−0.500⟩ ⟨0.675,−0.200⟩ ⟨0.475,−0.225⟩

x4 ⟨0.475,−0.550⟩ ⟨0.450,−0.600⟩ ⟨0.325,−0.800⟩ ⟨0.500,−0.500⟩ ⟨0.300,−0.525⟩

x5 ⟨0.675,−0.525⟩ ⟨0.650,−0.575⟩ ⟨0.525,−0.775⟩ ⟨0.700,−0.475⟩ ⟨0.500,−0.500⟩

respectively given in Table 14.
Step 8: We find the lower and upper approximation vectors using Eqs. (30 - 33) and the results are listed in Table15 as follows:
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Table 11

The aggregated BFPδ-nghd Ñ δ
xi

Ñ δ
x1

Ñ δ
x2

Ñ δ
x3

Ñ δ
x4

Ñ δ
x5

x1 ⟨0.500,−0.500⟩ ⟨0.506,−0.456⟩ ⟨0.429,−0.525⟩ ⟨0.525,−0.406⟩ ⟨0.456,−0.444⟩

x2 ⟨0.494,−0.544⟩ ⟨0.500,−0.500⟩ ⟨0.423,−0.569⟩ ⟨0.519,−0.450⟩ ⟨0.450,−0.488⟩

x3 ⟨0.571,−0.475⟩ ⟨0.578,−0.431⟩ ⟨0.500,−0.500⟩ ⟨0.596,−0.381⟩ ⟨0.528,−0.419⟩

x4 ⟨0.475,−0.594⟩ ⟨0.481,−0.550⟩ ⟨0.404,−0.619⟩ ⟨0.500,−0.500⟩ ⟨0.431,−0.538⟩

x5 ⟨0.544,−0.556⟩ ⟨0.550,−0.513⟩ ⟨0.473,−0.581⟩ ⟨0.569,−0.463⟩ ⟨0.500,−0.500⟩

Table 12
The values of f+

k and f−
k

C1 C2 C3 C4

f+
k ⟨1,−0.8⟩ ⟨0.9,−0.75⟩ ⟨0.8,−0.7⟩ ⟨0.65,−0.7⟩

f−
k ⟨0.2,−0.25⟩ ⟨0.3,−0.35⟩ ⟨0.2,−0.1⟩ ⟨0.25,−0.1⟩

Table 13
The values of Si andRi

x1 x2 x3 x4 x5
Si ⟨0.4396,−0.4667⟩ ⟨0.3833,−0.5095⟩ ⟨0.6885,−0.2929⟩ ⟨0.4094,−0.8061⟩ ⟨0.7000,−0.5053⟩

Ri ⟨0.1562,−0.3000⟩ ⟨0.2500,−0.2500⟩ ⟨0.2094,−0.2500⟩ ⟨0.3000,−0.3429⟩ ⟨0.2500,−0.2083⟩

Table 14
The lower and upper approximations of Si andRi

x1 x2 x3 x4 x5(
SP
i ,SN

i

)
⟨0.425,−0.475⟩ ⟨0.494,−0.431⟩ ⟨0.571,−0.500⟩ ⟨0.475,−0.381⟩ ⟨0.544,−0.419⟩(

SP
i ,SN

i

)
⟨0.571,−0.4667⟩ ⟨0.578,−0.500⟩ ⟨0.500,−0.500⟩ ⟨0.596,−0.5095⟩ ⟨0.528,−0.5095⟩(

RP
i ,RN

i

)
⟨0.429,−0.475⟩ ⟨0.422,−0.431⟩ ⟨0.500,−0.500⟩ ⟨0.404,−0.381⟩ ⟨0.472,−0.419⟩(

RP
i ,RN

i

)
⟨0.300,−0.3429⟩ ⟨0.300,−0.3429⟩ ⟨0.300,−0.3429⟩ ⟨0.300,−0.3429⟩ ⟨0.300,−0.3429⟩

Table 15
Values of Si, Si,Ri and Si

x1 x2 x3 x4 x5

Si −0.05 0.063 0.071 0.094 0.125

Si 0.1043 0.078 0 0.0865 0.0185

Ri −0.046 −0.009 0 0.023 0.053

Ri −0.0429 −0.0429 −0.0429 −0.0429 −0.0429

Step 9: Finally, by employing Eqs. (34), (35) and (36), the outputs of S ′
i, R′

i and Qi for γ = 0.5 are determinedin Table 16. By taking the ascending order of S ′
i,R′

i andQi, we acquired three distinct ranking outcomesof five alternatives which are displayed in Table 16. These rankings are pictorially depicted in Figure 2.
In light of Table 16, it becomes evident that x1 is the optimal alternative for all three ranking lists.

86



Spectrum of operational researchVolume 2, Issue 1 (2025) 72-91
Table 16

Values of S ′
i,R′

i andQi

x1 x2 x3 x4 x5 Ranking
S ′
i 0.0543 0.141 0.071 0.1805 0.1435 x1 ⪰ x3 ⪰ x2 ⪰ x5 ⪰ x4

R′
i −0.0889 0.519 −0.0429 −0.0199 0.0101 x1 ⪰ x3 ⪰ x4 ⪰ x5 ⪰ x2

Qi 0 0.8435 0.1040 0.5568 0.4348 x1 ⪰ x3 ⪰ x5 ⪰ x4 ⪰ x2

But,
Q
(
x(2)

)
−Q

(
x(1)

)
= Q (x3)−Q (x1) = 0.1040 <

1

5− 1
= 0.25.

Hence, the proposed algorithm’s first condition (tolerable advantage) is not justified. So, {x1, x3} is aset of compromise solutions.

x1 x2 x3 x4 x5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Alternatives

 S'i
 R'i
 Qi

Fig. 2. Ranking of alternatives

5. Comparative study and Discussion
The benefits of the suggested methodology are examined in this section, along with a comparisonwith existing methods. We compare our devised scheme with some prevalent approaches in the lit-erature including, Malik and Shabir [24], Wei et al. [27], Jana et al. [28], Gul [29], and Gul et al. [30].These comparison outcomes are displayed in Table 17.According to 17, we can see that the ranking outcomes of alternatives of the other approaches aredifferent, mainly due to alterations in the decision-making context. Yet, the optimal choice is identical.This fact is common in decision analysis. Generally, decision-makers can allocate various inputs of αand β according to their preferences and real demands.
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Table 17Comparison with some existing methods

Methods Ranking of alternatives Optimal alternative
Malik and Shabir [24] x1 ⪰ x2 ⪰ x3 ⪰ x4 ⪰ x5 x1

Wei et al. [27] x1 ⪰ x2 ⪰ x3 ⪰ x4 ⪰ x5 x1

Jana et al. [28] x1 ⪰ x3 ⪰ x4 ⪰ x2 ⪰ x5 x1

Gul [29] x1 ⪰ x2 ⪰ x3 ⪰ x4 ⪰ x5 x1

Gul et al. [30] x1 ≈ x4 ⪰ x3 ⪰ x5 ⪰ x2 x1, x4

Our proposed approach x1 ⪰ x3 ⪰ x5 ⪰ x4 ⪰ x2 x1

5.1 Merits of the devised strategy

To illustrate the uniqueness and superiority of our suggested strategy, we go over the drawbacksof current approaches and how the recommended framework addresses these issues.
1. MCDM issues with bipolar fuzzy data are studied using a variety of BFR-based decision-makingtechniques. But, not every MADM issue can be described by a BFR. Because of this, we providean approach based on the BFPδC-BFRS variant for tackling MCDM issues using bipolar fuzzyinformation.
2. Comparing our proposed method to the approaches described in [1, 10–15], we find that theseapproaches are unable to adequately reflect bipolarity in the decision procedure, which is acrucial aspect of human perception and behaviour.
3. Fuzzy decision-making strategies are substantially adopted to address issues with merely one-sided data; i.e., objects are ranked via the PMG. By using fuzzy structure in decision-making,we are unable to offer details about the dissatisfaction degree of alternatives regarding variouscriteria. Therefore, we advocate a BFPδC-BFRSs framework to rank the items.

5.2 Limitations

The framed scheme highly relies on the adequate input of the parameters α and β. Selecting thebest items is difficult and frequently arbitrary. In practice, various inputs ofα and βmay provide variedranking outcomes, making the technique less reliable.
6. Conclusions

FSs and RSs have several practical applications and are efficient mathematical techniques for cir-cumventing uncertainty. Meanwhile, BFSs address both fuzziness and bipolarity simultaneously. Inthe MCDM technique, the alternatives are compared against each other based on their relative per-formance to each other. Furthermore, to ascertain the relative importance of each criterion, theVIKOR technique necessitates a comparison of the criteria. The best compromise solution is deter-mined by the highest ranking of the alternatives. In this script, we established an innovative hybridVIKOR method within the context of the BFPδC-BFRSs. The proficiency and applicability of the framedmethodology have been highlighted using a numerical example. Finally, we conducted a comparison
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of the devised methodology with some other prevailing approaches and analyzed how our framedapproach is superior to existing ones.In the future, we extend our to more generalized frameworks including covering-based (α, β)-multi-granulation bipolar FRS model [30], and m-polar FSs [31].
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