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Integral inequalities, in general, serve as powerful tools for various
applications. Specifically, when an integral operator is used as a predictive
tool, an integral inequality can play a key role in defining, quantifying, and
analyzing such processes. Real-valued functions over fuzzy domain, also
referred to as real-valued functions, offer a valuable approach for
incorporating uncertainty into prediction models. In this paper, using a
straightforward proof method over newly defined triangular L, fuzzy space,
we established several new refinements for integral forms of classical

Fuzzy domain; Triangular Holder-like
inequality; Triangular Minkowski’s-like
inequality; Triangular Beckenbach’s-like
inequality.

Holder’s and newly defined triangular Hoélder’s-like inequality. Numerous
existing inequalities linked with triangular Hélder's-like inequality over fuzzy
domain can be improved through the newly obtained ones, as illustrated
through applications like triangular Hoélder’s power-mean-like integral
inequality, triangular = Cauchy-Schwarz-like inequality, triangular
Minkowski’s-like inequality, and triangular Beckenbach’s-like inequality over
fuzzy domain. Our main results Additionally, our outcomes represent
significant progressions in the field of mathematics.

1. Introduction

The theory of inequalities is extensively taught due to its numerous applications across various
scientific and technical fields. Mathematical inequalities are utilized in system design, engineering,
signal processing, and optimization problems. They provide a robust framework for analyzing and
understanding the behavior of solutions to numerical and partial differential equations. Within this
framework, fractional analysis serves as an innovative extension of classical analysis to non-integer
orders. Fractional integral inequalities are particularly useful in studying physical systems governed
by fractional differential equations, helping to derive energy estimates, as demonstrated in [1-7].
Convex functions have been a significant focus of mathematical research for a considerable time.
Their growing application in machine learning, optimization, and various scientific and technical
disciplines likely contributes to their increasing prominence [8-12]. There exists a profound and
intricate connection between convex functions and the theory of inequalities. Convex functions have
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played a pivotal role in the formulation and discovery of numerous important and practical
inequalities. A convex function on convex sets is defined as follows.

If ¥: K — Jtis a convex function defined on the interval K of real numbers, and 6,4 € K with 8 < A,
then

YK+ (1—-—r)) <x¥O)+ (1 —-—r)¥) (1)

Jensen's inequality, along with its related forms and extensions, is a fundamental and widely
recognized result for convex functions. Its broad applicability highlights its importance across various
scientific, engineering, and computational fields (refer to [13, 14]). Convex functions serve as
essential tools in contemporary research and form the basis of many mathematical inequalities.

In this regard, we are reminded of the well-known inequity resulting from Hermite and Hadamard
acting independently.

Theorem 1: Assume that the convex mapping ¥:[v,y] - R. Then, the following double-
inequality holds:

v+y

v(2) < S [ weodx <

‘P(n);r‘l'(n) 2)
where R is set of real number.
With the purpose of generalizing, enhancing, and expanding upon the well-known integral
inequality (1), see [15].
Suppose p > 1 and % + % = 1. If ¥ and € are two real functions defined on [, y] such that |¥|?

and |€|9 are integrable functions on [v, y], then,

L 1P (@)E@)| do < [[71W(0)IP do]*[[1€(0) % do] (3)

with equality if and only if ¥ and £ are proportional.

It is widely recognized that interval and fuzzy analysis provide essential tools for managing
uncertain data. Interval analysis is commonly applied to problems where data contain inaccuracies,
often due to measurement errors of various types. On the other hand, fuzzy analysis is suitable for
addressing models created in situations where complete information about the problem is
unavailable. Several generalized versions of Jensen's inequality in the context of integrals are
available in the literature (see, for instance, [16]). These variations are primarily differentiated by the
types of integrals applied. For example, the Sugeno integral is used in [17-20], the pseudo-integral is
adopted in [21], while the Choquet integral is utilized in [22,23]. Costa and Roman-Flores [24]
introduced new fuzzy variants of Minkowski and Beckenbach integral inequalities, without utilizing
the Sugeno integral. These innovative inequalities extend previously published interval versions of
the Minkowski and Beckenbach inequalities by incorporating the concept of integrability for fuzzy-
interval-valued functions through the Kaleva integral and a fuzzy order relation. The fuzzy order
relation is defined level-wise using the Kulisch—Miranker order relation on the interval space.
Additionally, the paper provides numerical examples to illustrate the practical application of the
developed theory.

Khan et al. [25, 26] introduced new types of fuzzy integral inequalities based on fuzzy fractional
integrals, highlighting a relationship between inclusion relations and up-and-down fuzzy relations.
Several illustrative examples are also presented to support the accuracy of the results. For more in-
depth information, refer to the original study. For additional insights on fuzzy theory, consult [27-36]
and the referenced works. Khastan and Rodriguez-Lopez [37] recently introduced real-valued
functions, utilizing Lebesgue measures to explore various properties of these functions within fuzzy
contexts. Later, Khan and Guirao [38] extended this type of integral to encompass fractional integrals,
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specifically Riemann-Liouville fractional-like integrals over fuzzy domains. Additionally, they
examined the properties of convex-like functions in fuzzy settings such that

If ¥:[A] - N is a convex-like function defined on the fuzzy number [A]* for all 1 € [0,1],
and 6,1 € [A]' with 8 < 4, then

YO+ (1—r)A)<k¥O)+ 1 -x)¥) (4)

where k € [0,1]. For basic concepts related to fuzzy sets see [39-41] and the references therein.

Inspired by the ongoing research work, this study introducess the triangular Holder’s like integral
inequality over triangular fuzzy domain and its enhanced version to establish Holder’s power-mean-
like integral inequality over fuzzy domain. Additionally, it introduces several classical and novel
integral inequalities are also obtained as exceptional cases of triangular Holder’s like integral integral
inequality. With the help of triangular Holder’s like integral integral inequality, triangular
Minkowski’s-like inequality and triangular Beckenbach’s-like inequality over fuzzy domain. The paper
also presents a few applications for unique representations of real-valued functions over triangular
fuzzy numbers. Finally, some additional conclusions and future planes are discussed.

2. Preliminaries

Firstly, we offer the ideas and concepts needed for the follow-up. From Section 3, we offer the
primary findings of the paper to guarantee its completion. We begin by defining a fuzzy set in such a
way that:

Definition 1: [39] A fuzzy subset T of R is characterized by a mapping A: R — [0,1] known as the
membership mapping of T, denoted as A: R — [0,1]. Hence, for further investigation, we adopt this
notation. We designate C to represent the set of all fuzzy subsets of R.

In [40], Goetschel and Voxman introduced the main idea of fuzzy numbers as follows:

Let A € C. Then, A is recognized as a fuzzy number or fuzzy interval if it satisfies the following
properties:

(1) A should be normal if there exists @ € R and A(e) = 1;

(2) A should be upper semi-continuous on R if for given 0 € R, and € > 0 there exist § > 0 such
that A(e) — A(y) < eforall y € Rwith |o — y| < &;

(3)A should be fuzzy convex, meaning A((1 — n)e + ny) = min(A(o),A(y)),for alle,y € R,and
n €[0,1];

(4) A should be compactly supported, i.e., cl{e € R| A(e) > 0} is compact.

We designate C, to represent the set of all fuzzy numbers of R.

Definition 2: [39] Given A € C,, the level sets or cut sets are defined as [A]' = {0 € R| A(o) > 1}
forallt € [0, 1].

From these definitions, we have

[A]" = [a(), v(®)] (5)
where
A(1) = inf{e € R|A(0) = 1},
v(1) = sup{e € R|A(0) = 1}.
Remark 1: [40] For each interval [v,y] € X, there characteristic function [TJ,T)]:]R—) [0,1]
defined by

— (1 0 € [v,1]
[o.n](e) = {O otherwise, (6)
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So, in a way, we can consider that fuzzy numbers extend the set of closed intervals of real
numbers, i.e., X € Cy, and consequently R € C, as well, since degenerated intervals can be

interpreted as real numbers. Instead of representing [p,y], we simply use §). A fuzzy number i is
referred to as a crisp number or fuzzy singleton, as discussed in [40].

Recalling the concepts commonly found in the literature, if A,0 € C, and i € R, then, for every
1 € [0, 1], the arithmetic operations are defined as follows:

[A® O]' = [A]' + [O] (7)
[A® O]' = [A]'x [ O] (8)
[n © Al' =n.[A]" (9)
Theorem 2: [39] The space C, dealing with a supremum metric, i.e., for A,0 € C,
doo (A, 0) = sup dy ([A]% [0]Y) (10)

is a complete metric space, where H denotes the well-known Hausdorff metric on space of
intervals.

Now we recall some the concept of integral over fuzzy domain, where the integrable mappings
are real-valued mappings over fuzzy domain.

Definition 3: [37] If A € Cy, and ¥: [A]* € R™ - R is measurable on [A]° (and hence on every
[A], for all 1 € [0,1]), then we define

(IAW)(O = f[A]llII(O) do (11)
where the integral on the right-hand side is computed according to Lebesgue integration. We

denote that ¥ is integrable over the fuzzy domain if the integral f[A]o Y (o) do is finite. In such

instances, the mapping is defined as:
fA‘I’: [0,1] » R

1> (fA‘P)(l) = f[A]l‘P(o) do (12)

Remark 2: By employing Remark 1, we derive the traditional definition of the integral, applicable
to real-valued functions that are integrable.

3. Holder-Like inequalities over triangular fuzzy LLp space
In this section, we start with the new version of the following triangular fuzzy LLp space such that
Considering the triangular fuzzy numbers (T-F-Ns) A = (0; 0,8), wherw © € R, and 0,¢ €E R,
thus

A_ma, £€[o—o0,0]
Ae) = “’f“, £ € (0,0 +¢] (13)

0, otherwise.

Following is the geometric representation of T-F-Ns (Figure 1):
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a0 — T o w4+ £
Fig. 1. Trapezoidal fuzzy number
whose parametrized form is [A]' = [0 — o (1 — 1), 0 + (1 —1)], for all 1 € [0,1]. Then,

Lp[A] = {‘P|‘P: [0—0c(1—1),0+ &1 —1)] > R is measurable on[o — (1 —1),0 + &(1 —
)] and f[([)—o'(l—l),(o+f(1—l)] Y (e)do < oo, forallt € [0,1]}.
A measurable mapping defined on A is said to be p™ power sum able, where p > 1, if

L= UAI‘U)(O = f[A]LlP(O) do < (14)

then, Lp space is denoted and defined as

L,[A] = {lP|lP A - R is measurable on[A]*and fA]l Y(e)doe < 00}.

Remark 3: Utilizing Remark 1 and Remark 2, we derive the classical L,[v, ] space.

Theorem 3. (Holder like inequality) Suppose p > 1 and % + % = 1.If¥ and € are two real functions

defined on [A]' = [0 — o(1 — 1), © + £(1 — 1)] such that |[¥|? and |E]9 are integrable functions on
[A]' = [0 — (1 —1),0 + (1 — 1)], then, for each 1t € [0,1]

1 1
1-v 1-v » (1-v q
[ @E@) do < [ [ 1w 0P do]f 124 (o)1 do] (15)

with equality if and only if ¥ and &€ are proportional.
Proof. Since [A]° = [© — 0, © + &] (and hence on every [A]}, for all 1 € [0,1])

f~ /P (0)E(0)| do = fw+f|‘1”(o)8(o)| do, on every [A]Y, for all 1 € [0, 1]

o+¢& o+&

1
Note that, Ifn = [f [P ()| do] =0, and¢ = [f |E(0)]9 do] =0, it is obvious that
equality will holds because functions ¥ and & are measurable on [A'=[o—0(1—-1),0+
§(1—-1)] )
Considering n = [f I'P(o)l*’ do] #0, and & = [f
[A]Y, for all 1 € [0,1]).

Case |. Considering « =

1

m+f|8(o)|qdo] # 0 (and hence on every

IW(O)IIU 1€C)|

: , Then, by using Auxiliary inequality, we have

¥ ()IE@) _ |‘1"(®)|"_|_|€(®)|q
_n P ass
Considering integration over [A]° = [0 — 0, © + &] (and hence on every [A]Y, for all 1 € [0,1])

with respect to o6, we have
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1 o+¢& 1 o+¢& 1 o+¢&
-—f WK@E@NdoS——f WK@Pdo+——f 1£(0) |7 do,
T]{ o0—0 pnp o0—0 qfq o0—0

(and hence on every [A]}, for all 1 € [0,1]), which implies that
1 f“f 1 1
— ¥ (0)E(0)|do < —(nP) + —
8 Jo-o pnP

q¢¢
= % + i = 1, (and hence on every [A]}, for all 1 € [0,1]).

Then,

(€D,

o+¢& o+¢& % o+& %
f |w<e>s(o>|dosU |w<e)|*’do] U |e(o)|wo],

o0—0

(and hence on every [A]}, for all 1 € [0,1]),

which implies that
1
P

o+&(1-1) o+&(1-1)
f [P (0)E(0)|de < U [P (0)|? dol I

o-o(1-1) o-o(1-1)

foreach 1 € [0,1].

o+&(1-1) %
f (@) do] ,

o-o(1-1)

Remark 5: If A = [v, 1], then from (15), we get classical Holder’s-like inequality (3) for real-valued
mappings.

a) Applications
1 1
When we obtain |¥||€| = (I‘I’Ig) (I'PIEIEI), as a straightforward outcome of the Holder

Inequality, we have the Holder’s power-mean-like integral inequality that follows:
Theorem 4. Suppose p > 1. If ¥ and € are two real functions defined on fuzzy number [A]* =
[0 — (1 —1),0+ &(1 —1)] such that || and |¥|P|€| are integrable functions on [A]Y, then:

1 1

[P0 D @)E@) do < ([ @)P do)' ([ 1w @lIE@) do) (16)

o—0o(1-1) o—0o(1-1) o—-o(1-1)

Proof. By using same arguments like Theorem 3, it can be proved.

If p =2 = q, then we attain the following outcome:

Corollary 1: (Cauchy-Schwarz’s-like inequality) In accordance with the premises of Theorem 3, if
p = 2 = q, then, it is evident that
1 1
2

¥ (0)[2do )’ (J 502 1€ o), (17)

o-o(1-1)

o+&(1-1) o+&(1-1)
[ sy ¥ @E@Ido < (77075

foreach 1 € [0,1].

4. Minkowski-Like inequality

Theorem 5. (Minkowski’s-like inequality) Suppose p = 1. If ¥ and £ are two real functions
defined on [A]' = [0 — 0(1 — 1), © + £(1 — 1)] such that |¥|® and |E|® are integrable functions on
[A]}, then, for each 1 € [0,1]

1 1
o+&(1-1) » o+&(1-1) »
@I do” + [ [ €)1 do]. (18)

[

([ 1w (0) + £@@)Pdo) < [

o o
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with equality if and only if ¥ and € are proportional.
If1>p>0,then

1

(o 1w @ + @ do)” = [ [N 1w (@ do” + [f,77 7 1E@I do]” (19)

© o—o(1-1) o—-o(1-1)

Proof. Case I. Suppose that p = 1 and we know that

[#(0) + £(0)| < [¥(0)] + E(a)!. ) )

Considering integration on both side over [A]° = [© — g, ©® + ] (and hence on every [A]}, for all
1 € [0,1]), we have

o+¢& o+¢& o+¢&
f |W(o)+£(o)|do§f |W(9)|d9+f |E(0)]| do,

o0—0 o0—0
which implies that

o+&(1-1) o+&(1-1) o+&(1-1)
f |W(0)+£(o)|do§f |W(9)|d9+f |E(0)]| de.

o—o0(1-1) o—-o0(1-1) o-0(1-1)
Case Il. Consider that p > 1 and that p and q are conjugate indices. Then,
o+ o+¢&
f [P (e) + E()|Pde = f [P () + E@0)]| |¥(6) + ()" 1de
o0—0 o0—0

o+¢&
= f (1% ()| +1€(@)DI¥(e) + E() [P~ do
e o+&

o+&
= [ @I @ Pt [ @Y + @I do

o0—0 o0—0
and hence on every [A]' = [0 — o(1 — 1), 0 + &(1 —1)], forall 1 € [0,1].
By using Holder like Inequality, we have

1

o+{ ©0+¢ % 0+& 3
f W (o) + E(0)|Pde < [f ¥ (e)|? d@l lf ¥ (0) + E(6)|®Da dgl

©0—0

©0+& % o+§ q
+ U ()] dol U |¥(0) + E(0)|®~Da d@l

o+& % o+& % o+& %
= U ¥ (0)|? dol + U |E(0)|P dol [f |¥(0) + E(0)|®P~Da dol ,

which implies, we have

o+¢&
j (o) + £()° do

o+& % o+& % o+¢& q
f [P (0)|? dol + U |E(@)|P dol U P (0) + E()|P d@l

o0—0

<

E-N -]

< <[ f“‘)"fj |'P(0)|"do]% + [ ff_+j|8(0)|pdo]%> l(ffff ¥ (o) + 8(o)l*’do)%l :

From above inequality, we have
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_?
q

((f " (o) + ()P do)l)p [(f "1 (o) + EIP do)ll

o+ 5 o+ %
f W(owo] +U |e<o)|vdo],

o0—0

<

implies that
1

o+¢ % o+& % 0+§ P
(f [P (e) + E>)|° do> < U [P (e)|? dol + U [E(0)|P dol ,
and hence o(;_gvery [A]' = [0 —a(1—1), c(g_-: E(1 —1)], forallt Z_f‘(),l].

Hence,
1
1-v (1-9 1-v »
(e l§|w<o)+e<o)|vde) [ o )Pdo] [ ie@)IP do”.

Remark 6. If A = [v,1], then from (18) and (19), we get classical Minkowski’s inequality for real-
valued mappings.
Example 1. Consider the trapezoidal fuzzy numbers A = (2; 2,2), that is

1, A=2
[ 42
- —%, K€]0,2]
Ao =1, 2 (20)
LT, A€ [2,2+ 2]
0, otherwise,

whose parametrized formis [A]' = [2 +2(1 —1),2 + 2(1 —1)], forall1 € [0,1]. Let p = %, and
Y (0) = 0 and £(0) = 02 be the real-valued mappings on fuzzy domain A.

o+&(1-1)
f (‘}’(0))’04r1 do = 8\/_((2 - 1)2 - lg)
e B
J (#()’ do = ((2 -7 -2)
o—0o(1-1)
o+&(1-1)
& "do=322 -4 +32 -3
[ (o) do =320 )

o+&(1-1)
f (8(0))p do =8 — 81t

o-o(1-1)

w+$(1 1)

Jo- o(1-1) (¥(0) +E(9)) 2 ((2 - lﬁ - lg) ((5 - 21); -1+ 21)3)
ffff((f_f))(‘z”(e)) +£(0))" do = 5\/5((2 — - 3) ((5 20— (1+ 21)3).

Now

p+1

wN

[ o] = (%((z-gié))

1

[ (o+$(1 ‘)(g( ))D+1 ]v+1 _ (32(2 — 41+ 32 — L3))§

o—o(1-1)
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1 2
5 5\ 12

(J2 50w (0) + (@)™ do )™ = [2v2 (2~ 7 —2) (5 — 202 — (@ + 207 )|

o—-o(1-1)
Then

vz (2 - 07 - ) (G -20:— 1+ 21)3)]2

< <%f (- D — 3))3 +(32(2— 41+ 32— 1¥)),

for each 1 € [0,1].
Hence, Minkowski-like inequality (18) is verified. For (19), we have

[ o) dof = (- 0i=i))

0+&(1-0) %
[ j (£))° dol = (8 —81)?,

0(1 )

(1275070 + £ o) = 2 (2~ 0F — ) (5 - 20F 1+ 208)]

o-o(1-1)
Then,

2
8 303 3 EN 2 303
Evz(@-ni-i)(G-20:-a+202)| 2 (T((z ~: - l)> +(8 - 802
foreach 1 € [0,1].
5. Beckenbach’s inequality
Theorem 6. (Beckenbach’s inequality) Suppose 1 >p > 0. If ¥ and £ are two real functions
definedon [A]' = [0 — (1 —1),0 + (1 — 1)] and ¥ (6) > 0,E(6) > 0, then

p+1

m+f(1 1) v+1 m+§’(1 1) p+1 co+f(1 )
Jom 1) (P (©)+E(0)) ° < Jomo— (¥(@) Jomo1—1) (E(0) (21)
[T wre@) a0 T e j))(w(@)) do  [OHOC 3(8(0)) do

with equality if ¥ and £ are proportional.
Proof. Considering

1 1
W= (ol = (e ao)

o-0o(1-1) )

and
o+&(1-1) % o+&(1-1) %
Jro= (0w do), Jo = (JEH8 0y do)'.

Now by using Randon inequality for real number, we have

W (L)
]1p ]2p B (11+]2)p '

that is to say

p+1

(22)

1

Lo W) 0[O (@) ao ((ffjj('*’(o))md")m+(f$j§(5(°))p+1 o) )
1
p

o+& o p ° o+& ° p o 1
Jooa(¥(@)'a Jo-s(E@)'a ((f(;"_’fj(zy(@))"a@)” +(J2* (£(0)) ao) )
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and hence on every [A]' = [0 — o(1 — 1), 0 + £(1 —1)], forall 1 € [0,1].
Now because1 >p > 0,then2 >p+ 1> 1, from (21) and (22), we achieve

[ <D+E(1P(O) +8(0)) d ]p+1 (f(;o_-lf(qj(()))p-l-l do)p+1 ( o+f(8( ))D+1 )p+1 (23)
and

[ m+$(‘1’(0) + 8(0)) d@] (f(;ojj(‘}’(o))p do); ( m+$(€( )) d@) (24)
As we know that, if a, b, c > 0, then we have

a26©%2£ (25)

bSC@%Z% (26)

Finally, from (23), (24), (25) and (26), we have

1 p+1

(( [ (@)™ o) 4 ([ (£@)" o) )

f(fjj(‘l’(o) +8(0))p+1d0

(27)

P

((f;:rj(‘p(o))pdo)% ( ‘°+f(5(0)) do) ) B f;ﬂ—f(""(")+5(0))pdo

and hence on every [A]' = [0 — o(1 — 1), 0 + &(1 — 1)], for all ¢ € [0,1]. Hence, from (26) and
(27), we conclude the required result.

—

Remark 7. If A = [v, 1], then from (21), we get following classical Beckenbach’s inequality for real-
valued mappings.

Example 2. Consider the trapezoidal fuzzy numbers A = (2; 2,2), with parametrized form [A]* =
[24+2(—1),2+2(1—1)], for allt € [0,1], taken from Example 1. Let p = %, and ¥(o) = 0 and

£(0) = 02 be the real-valued mappings on fuzzy domain A.
For (20), we have

[0 w(@))" do]'

(e-0i-5).

0+&(1-0) %
[ j (£))’ dol = (8 —81)?,

0(1 )

(o0 (w(o) +£(0))’ do) = [2vz(2- 07— 2) (5 - 207 — (1 + 207 )]

Then,

3 3 3 3\ 72 3 30\ 2
33 3 3 V2 33
Evz(@-v:-2) (-2 - +202)| = (472((2 ~ - l)> +(8 - 807
foreach 1 € [0,1].
For, triangular Beckenbach inequality (21), we have

10
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5 5 5 5
w+€((1 l))(q,( )+6(0)) g&(e—z)i—ﬁ)((s—zz)i—(1+21)i>
(o a(1—1 _

JereaTy (4’(0)+5(0)) do gﬁ((z—l);—l;)<(5—21)%—(1+21)%>
8v2 5 5
[0 o) o T(<2“)2‘”>

+&(1-1) - 3 3
Jo- o(1- Ll) (w(o )) do 43_‘/7<(2_l)7_ﬁ>

f+§((11 3(5( )" do _32(2-414312-13)

RO R T
From (25)
5 5 5 8v2 5 5
> ((2 1)2 12><(5—21)2—(1+21)2> ST<(2—1)2—12>-|_32(2_41_|_312_l3)

g«/f((z—L)%—l%)((S—Zl)%—(1+21)%> ¥<(2—1)2—5> 881 ’

foreach 1 € [0,1].

6. Conclusion

By utilizing the Lebesgue integral for real-valued functions over fuzzy domain as the
corresponding expectation, we gain a reliable framework for managing and quantifying uncertainty.
Building on this idea, we apply the Lebesgue integral to demonstrate triangular Holder’s-like
inequality for real-valued functions over fuzzy domain. Furthermore, we explore additional power
mean Holder’s-like inequality for real-valued functions over fuzzy domain to identify the appropriate
form of triangular Holder’s-like inequality. In contrast, we examine the connections between
triangular Holder, and triangular Cauchy-Schwarz, triangular Minkowski’s-like inequality, and
triangular Beckenbach’s-like inequalities domain within the fuzzy interval setting. This analysis
contributes to the generalization of several classical integral inequalities in the real-valued context.
To conclude, we present updated versions of Holder and Cauchy—Schwarz inequalities using
triangular fuzzy number, incorporating submodular measures and comonotone functions—topics we
plan to explore further in future work. Additionally, examples and applications are provided to
illustrate the results achieved.

Acknowledgement
This research was not funded by any grant

Conflicts of Interest
The authors declare no conflicts of interest.

References

[1] Todinov, M. (2021). Interpretation of algebraic inequalities: Practical engineering optimisation and generating new
knowledge. CRC Press. https://doi.org/10.1201/9781003184470

[2] Qin, Y. (2016). Integral and discrete inequalities and their applications. Birkhduser. https://doi.org/10.1007/978-3-
319-32921-8

[3] Khan, M. B., Santos-Garcia, G., Noor, M. A., & Soliman, M. S. (2022). Some new concepts related to fuzzy fractional
calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos, Solitons & Fractals, 164,
112692. https://doi.org/10.1016/j.chaos.2022.112692

[4] Khan, M. B., Catas, A., Aloraini, N., & Soliman, M. S. (2023). Some certain fuzzy fractional inequalities for up and
down h-pre-invex via fuzzy-number valued mappings. Fractal and Fractional, 7(2), 171.
https://doi.org/10.3390/fractalfract7020171

11


https://doi.org/10.1201/9781003184470
https://doi.org/10.1007/978-3-319-32921-8
https://doi.org/10.1007/978-3-319-32921-8
https://doi.org/10.1016/j.chaos.2022.112692
https://doi.org/10.3390/fractalfract7020171

Spectrum of Operational Research
Volume 3, Issue 1 (2026) 1-13

(5]
(6]

(7]
(8]

(9]

(10]

(11]

(12]

(13]
(14]
(15]
(16]
(17]

(18]
(19]

[20]

[21]

[22]

(23]

[24]
[25]

(26]

[27]

(28]

Zhang, T., Deng, F., & Shi, P. (2023). Non-fragile finite-time stabilization for discrete mean-field stochastic systems.
IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2023.3266789

Jiang, X., Wang, Y., Zhao, D., & Shi, L. (2024). Online Pareto optimal control of mean-field stochastic multi-player
systems using policy iteration. Science China Information Sciences, 67(4), 1-17. https://doi.org/10.1007/s11432-
023-3821-9

Jia, G., Luo, J., Cui, C., Kou, R., Tian, Y., & Schubert, M. (2023). Valley quantum interference modulated by hyperbolic
shear polaritons. Physical Review B, 109(15), 155417. https://doi.org/10.1103/PhysRevB.109.155417

Ullah, N., Khan, M. B., Aloraini, N., & Treantd, S. (2023). Some new estimates of fixed point results under multi-
valued mappings in G-metric spaces with application. Symmetry, 15(3), 517. https://doi.org/10.3390/sym15030517
Tian, F., Liu, Z., Zhou, J., Chen, L., & Feng, X. T. (2024). Quantifying post-peak behavior of rocks with type-I, type-lIl,
and mixed fractures by developing a quasi-state-based peridynamics. Rock Mechanics and Rock Engineering, 57(1),
1-37. https://doi.org/10.1007/s00603-023-03688-3

Guo, S., Zuo, X., Wu, W, Yang, X., Zhang, J., Li, Y., ... & Zhu, S. (2024). Mitigation of tropospheric delay induced errors
in TS-InSAR ground deformation monitoring. International Journal of Digital Earth, 17(1), 2316107.
https://doi.org/10.1080/17538947.2024.2316107

Guo, J,, Liu, Y., Zou, Q., Ye, L., Zhu, S., & Zhang, H. (2023). Study on optimization and combination strategy of multiple
daily runoff prediction models coupled with physical mechanism and LSTM. Journal of Hydrology, 624, 129969.
https://doi.org/10.1016/j.ihydrol.2023.129969

Chang, X., Guo, J., Qin, H., Huang, J., Wang, X., & Ren, P. (2024). Single-objective and multi-objective flood interval
forecasting considering interval fitting coefficients. Water Resources Management, 38(1), 1-20.
https://doi.org/10.1007/s11269-023-03689-5

Lin, Q. (2019). Jensen inequality for superlinear expectations. Statistics & Probability Letters, 151, 79-83.
https://doi.org/10.1016/j.spl.2019.03.012

White lll, C. C., & Harrington, D. P. (1980). Application of Jensen’s inequality to adaptive suboptimal design. Journal
of Optimization Theory and Applications, 32(1), 89-99. https://doi.org/10.1007/BF00934554

Mitrinovi¢, D. S., Pecari¢, J. E., & Fink, A. M. (1993). Classical and new inequalities in analysis. Kluwer Academic.
https://doi.org/10.1007/978-94-017-1043-5

Mesiar, R., Li, J., & Pap, E. (2010). The Choquet integral as Lebesgue integral and related inequalities. Kybernetika,
46(6), 1098—1107. https://doi.org/10.1007/s00034-010-9215-3

Pap, E., & Strboja, M. (2010). Generalization of the Jensen inequality for pseudo-integral. Information Sciences,
180(4), 543-548. https://doi.org/10.1016/].ins.2009.11.012

Pecari¢, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Elsevier Science.
Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and
Applications, 91(2), 552-558. https://doi.org/10.1016/0022-247X(83)90169-5

Romdén-Flores, H., Flores-Franulic, A., & Chalco-Cano, Y. (2007). A Jensen type inequality for fuzzy integrals.
Information Sciences, 177(15), 3192—-3201. https://doi.org/10.1016/].ins.2007.02.007

Strboja, M., Grbic, T., Stajner-Papuga, I., Grujic, G., & Medic, S. (2013). Jensen and Chebyshev inequalities for
pseudo-integrals of set-valued functions. Fuzzy Sets and Systems, 222, 18-32.
https://doi.org/10.1016/j.fss.2012.12.004

Wang, R. S. (2011). Some inequalities and convergence theorems for Choquet integral. Journal of Applied
Mathematics and Computing, 35(1), 305—321. https://doi.org/10.1007/s12190-010-0389-4

Zhao, X., & Zhang, Q. (2011). Holder type inequality and Jensen type inequality for Choquet integral. In Knowledge
engineering and management: Proceedings of the sixth international conference on intelligent systems and
knowledge engineering, Shanghai, China, Dec 2011 (ISKE2011) (pp. 1-10). Springer. https://doi.org/10.1007/978-3-
642-25661-5 1

Costa, T. M., & Roman-Flores, H. (2017). Some integral inequalities for fuzzy-interval-valued functions. Information
Sciences, 420, 110-125. https://doi.org/10.1016/j.ins.2017.08.045

Khan, M. B., Mohammed, P. O., Noor, M. A., & Hamed, Y. S. (2021). New Hermite—Hadamard inequalities in fuzzy-
interval fractional calculus and related inequalities. Symmetry, 13(4), 673. https://doi.org/10.3390/sym13040673
Khan, M. B., Mohammed, P. O., Noor, M. A., & Abuahalnaja, K. (2021). Fuzzy integral inequalities on coordinates of
convex fuzzy interval-valued functions. Mathematical Biosciences and Engineering, 18(6), 6552—6580.
https://doi.org/10.3934/mbe.2021325

Zhao, D.F.,An, T.Q., Ye, G. J., & Liu, W. (2020). Chebyshev type inequalities for interval-valued functions. Fuzzy Sets
and Systems, 396, 82—101. https://doi.org/10.1016/j.fss.2019.07.012

Mesiar, R, Li, J., & Pap, E. (2010). The Choquet integral as Lebesgue integral and related inequalities. Kybernetika,
46(6), 1098—1107. https://doi.org/10.1007/s00034-010-9215-3

12


https://doi.org/10.1109/TAC.2023.3266789
https://doi.org/10.1007/s11432-023-3821-9
https://doi.org/10.1007/s11432-023-3821-9
https://doi.org/10.1103/PhysRevB.109.155417
https://doi.org/10.3390/sym15030517
https://doi.org/10.1007/s00603-023-03688-3
https://doi.org/10.1080/17538947.2024.2316107
https://doi.org/10.1016/j.jhydrol.2023.129969
https://doi.org/10.1007/s11269-023-03689-5
https://doi.org/10.1016/j.spl.2019.03.012
https://doi.org/10.1007/BF00934554
https://doi.org/10.1007/978-94-017-1043-5
https://doi.org/10.1007/s00034-010-9215-3
https://doi.org/10.1016/j.ins.2009.11.012
https://doi.org/10.1016/0022-247X(83)90169-5
https://doi.org/10.1016/j.ins.2007.02.007
https://doi.org/10.1016/j.fss.2012.12.004
https://doi.org/10.1007/s12190-010-0389-4
https://doi.org/10.1007/978-3-642-25661-5_1
https://doi.org/10.1007/978-3-642-25661-5_1
https://doi.org/10.1016/j.ins.2017.08.045
https://doi.org/10.3390/sym13040673
https://doi.org/10.3934/mbe.2021325
https://doi.org/10.1016/j.fss.2019.07.012
https://doi.org/10.1007/s00034-010-9215-3

Spectrum of Operational Research
Volume 3, Issue 1 (2026) 1-13

[29]

(30]
(31]

(32]

(33]

(34]

(35]

(36]
(37]

(38]

(39]
(40]

[41]

Pap, E., & Strboja, M. (2010). Generalization of the Jensen inequality for pseudo-integral. Information Sciences,
180(4), 543-548. https://doi.org/10.1016/].ins.2009.11.012

Pecaric, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Elsevier Science.
Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and
Applications, 91(2), 552-558. https://doi.org/10.1016/0022-247X(83)90169-5

Roman-Flores, H., Flores-Franulic, A., & Chalco-Cano, Y. (2007). A Jensen type inequality for fuzzy integrals.
Information Sciences, 177(15), 3192-3201. https://doi.org/10.1016/.ins.2007.02.007

Strboja, M., Grbic, T., Stajner-Papuga, I., Grujic, G., & Medic, S. (2013). Jensen and Chebyshev inequalities for
pseudo-integrals of set-valued functions. Fuzzy Sets and Systems, 222, 18-32.
https://doi.org/10.1016/j.fss.2012.12.004

Wang, R. S. (2011). Some inequalities and convergence theorems for Choquet integral. Journal of Applied
Mathematics and Computing, 35(1), 305-321. https://doi.org/10.1007/s12190-010-0389-4

Zhao, X., & Zhang, Q. (2011). Holder type inequality and Jensen type inequality for Choquet integral. In Knowledge
engineering and management: Proceedings of the sixth international conference on intelligent systems and
knowledge engineering, Shanghai, China, Dec 2011 (ISKE2011) (pp. 1-10). Springer. https://doi.org/10.1007/978-3-
642-25661-5 1

Costa, T. M., & Roman-Flores, H. (2017). Some integral inequalities for fuzzy-interval-valued functions. Information
Sciences, 420, 110-125. https://doi.org/10.1016/j.ins.2017.08.045

Khastan, A., & Rodriguez-Lopez, R. (2022). Some aspects on computation of scalar valued and fuzzy valued integrals
over fuzzy domains. Iranian Journal of Fuzzy Systems, 19(5), 1-15. https://doi.org/10.22111/ijfs.2022.7217

Khan, M. B., & Guirao, J. L. (2023). Riemann Liouville fractional-like integral operators, convex-like real-valued
mappings and their applications over fuzzy domain. Chaos, Solitons & Fractals, 177, 114196.
https://doi.org/10.1016/j.chaos.2023.114196

Diamond, P., & Kloeden, P. E. (1994). Metric spaces of fuzzy sets: Theory and applications. World Scientific.
https://doi.org/10.1142/2326

Hanss, M. (2005). Applied fuzzy arithmetic: An introduction with engineering applications. Springer Science &
Business Media. https://doi.org/10.1007/3-540-32391-0

Goetschel, R., & Voxman, W. (1986). Elementary fuzzy calculus. Fuzzy Sets and Systems, 18(1), 31-43.
https://doi.org/10.1016/0165-0114(86)90026-6

13


https://doi.org/10.1016/j.ins.2009.11.012
https://doi.org/10.1016/0022-247X(83)90169-5
https://doi.org/10.1016/j.ins.2007.02.007
https://doi.org/10.1016/j.fss.2012.12.004
https://doi.org/10.1007/s12190-010-0389-4
https://doi.org/10.1007/978-3-642-25661-5_1
https://doi.org/10.1007/978-3-642-25661-5_1
https://doi.org/10.1016/j.ins.2017.08.045
https://doi.org/10.22111/ijfs.2022.7217
https://doi.org/10.1016/j.chaos.2023.114196
https://doi.org/10.1142/2326
https://doi.org/10.1007/3-540-32391-0
https://doi.org/10.1016/0165-0114(86)90026-6

