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Integral inequalities, in general, serve as powerful tools for various 
applications. Specifically, when an integral operator is used as a predictive 
tool, an integral inequality can play a key role in defining, quantifying, and 
analyzing such processes. Real-valued functions over fuzzy domain, also 
referred to as real-valued functions, offer a valuable approach for 
incorporating uncertainty into prediction models. In this paper, using a 
straightforward proof method over newly defined triangular 𝕃𝑃  fuzzy space, 
we established several new refinements for integral forms of classical 
Hölder’s and newly defined triangular Hölder’s-like inequality. Numerous 
existing inequalities linked with triangular Hölder's-like inequality over fuzzy 
domain can be improved through the newly obtained ones, as illustrated 
through applications like triangular Hölder’s power-mean-like integral 
inequality, triangular Cauchy-Schwarz-like inequality, triangular 
Minkowski’s-like inequality, and triangular Beckenbach’s-like inequality over 
fuzzy domain. Our main results Additionally, our outcomes represent 
significant progressions in the field of mathematics.  
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1. Introduction 

The theory of inequalities is extensively taught due to its numerous applications across various 
scientific and technical fields. Mathematical inequalities are utilized in system design, engineering, 
signal processing, and optimization problems. They provide a robust framework for analyzing and 
understanding the behavior of solutions to numerical and partial differential equations. Within this 
framework, fractional analysis serves as an innovative extension of classical analysis to non-integer 
orders. Fractional integral inequalities are particularly useful in studying physical systems governed 
by fractional differential equations, helping to derive energy estimates, as demonstrated in [1–7]. 
Convex functions have been a significant focus of mathematical research for a considerable time. 
Their growing application in machine learning, optimization, and various scientific and technical 
disciplines likely contributes to their increasing prominence [8–12]. There exists a profound and 
intricate connection between convex functions and the theory of inequalities. Convex functions have 
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played a pivotal role in the formulation and discovery of numerous important and practical 
inequalities. A convex function on convex sets is defined as follows. 
If 𝛹:𝐾 → 𝔑 is a convex function defined on the interval 𝐾 of real numbers, and 𝜃, 𝜆 ∈ 𝐾 with 𝜃 < 𝜆, 
then 

𝛹(𝜅𝜃 + (1 − 𝜅)𝜆) ≤ 𝜅𝛹(𝜃) + (1 − 𝜅)𝛹(𝜆) (1) 

Jensen's inequality, along with its related forms and extensions, is a fundamental and widely 
recognized result for convex functions. Its broad applicability highlights its importance across various 
scientific, engineering, and computational fields (refer to [13, 14]). Convex functions serve as 
essential tools in contemporary research and form the basis of many mathematical inequalities. 

In this regard, we are reminded of the well-known inequity resulting from Hermite and Hadamard 
acting independently. 

Theorem 1: Assume that the convex mapping 𝛹: [𝔳, 𝔶] → ℜ. Then, the following double-
inequality holds: 

𝛹 (
𝔳+𝔶

2
) ≤

1

𝔶−𝔳
∫ 𝛹(𝑥)𝑑𝑥
𝔶

𝔳
≤

𝛹(𝔶)+𝛹(𝔳)

2
 (2) 

where ℜ is set of real number. 
With the purpose of generalizing, enhancing, and expanding upon the well-known integral 

inequality (1), see [15]. 

Suppose 𝔭 > 1 and 
1

𝔭
+
1

𝔮
= 1. If 𝛹 and ℰ are two real functions defined on [𝔳, 𝔶] such that |𝛹|𝔭 

and |ℰ|𝔮 are integrable functions on [𝔳, 𝔶], then,   

∫ |𝛹(ⱺ)ℰ(ⱺ)|
𝔶

𝔳
𝑑ⱺ ≤ [∫ |𝛹(ⱺ)|𝔭

𝔶

𝔳
𝑑ⱺ]

1

𝔭[∫ |ℰ(ⱺ)|𝔮
𝔶

𝔳
𝑑ⱺ]

1

𝔮  (3) 

with equality if and only if 𝛹 and ℰ are proportional. 
It is widely recognized that interval and fuzzy analysis provide essential tools for managing 

uncertain data. Interval analysis is commonly applied to problems where data contain inaccuracies, 
often due to measurement errors of various types. On the other hand, fuzzy analysis is suitable for 
addressing models created in situations where complete information about the problem is 
unavailable. Several generalized versions of Jensen's inequality in the context of integrals are 
available in the literature (see, for instance, [16]). These variations are primarily differentiated by the 
types of integrals applied. For example, the Sugeno integral is used in [17-20], the pseudo-integral is 
adopted in [21], while the Choquet integral is utilized in [22,23]. Costa and Román-Flores [24] 
introduced new fuzzy variants of Minkowski and Beckenbach integral inequalities, without utilizing 
the Sugeno integral. These innovative inequalities extend previously published interval versions of 
the Minkowski and Beckenbach inequalities by incorporating the concept of integrability for fuzzy-
interval-valued functions through the Kaleva integral and a fuzzy order relation. The fuzzy order 
relation is defined level-wise using the Kulisch–Miranker order relation on the interval space. 
Additionally, the paper provides numerical examples to illustrate the practical application of the 
developed theory. 

Khan et al. [25, 26] introduced new types of fuzzy integral inequalities based on fuzzy fractional 
integrals, highlighting a relationship between inclusion relations and up-and-down fuzzy relations. 
Several illustrative examples are also presented to support the accuracy of the results. For more in-
depth information, refer to the original study. For additional insights on fuzzy theory, consult [27-36] 
and the referenced works. Khastan and Rodríguez-López [37] recently introduced real-valued 
functions, utilizing Lebesgue measures to explore various properties of these functions within fuzzy 
contexts. Later, Khan and Guirao [38] extended this type of integral to encompass fractional integrals, 
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specifically Riemann-Liouville fractional-like integrals over fuzzy domains. Additionally, they 
examined the properties of convex-like functions in fuzzy settings such that 

If 𝛹: [Ã] → 𝔑 is a convex-like function defined on the fuzzy number [Ã]𝚤 for all 𝚤 ∈ [0,1], 

and 𝜃, 𝜆 ∈ [Ã]𝚤 with 𝜃 < 𝜆, then 

 𝛹(𝜅𝜃 + (1 − 𝜅)𝜆) ≼ 𝜅𝛹(𝜃) + (1 − 𝜅)𝛹(𝜆) (4) 

where 𝜅 ∈ [0,1]. For basic concepts related to fuzzy sets see [39-41] and the references therein. 
Inspired by the ongoing research work, this study introducess the triangular Hölder’s like integral 

inequality over triangular fuzzy domain and its enhanced version to establish Hölder’s power-mean-
like integral inequality over fuzzy domain. Additionally, it introduces several classical and novel 
integral inequalities are also obtained as exceptional cases of triangular Hölder’s like integral integral 
inequality. With the help of triangular Hölder’s like integral integral inequality, triangular 
Minkowski’s-like inequality and triangular Beckenbach’s-like inequality over fuzzy domain. The paper 
also presents a few applications for unique representations of real-valued functions over triangular 
fuzzy numbers. Finally, some additional conclusions and future planes are discussed. 

 
2. Preliminaries  

Firstly, we offer the ideas and concepts needed for the follow-up. From Section 3, we offer the 
primary findings of the paper to guarantee its completion. We begin by defining a fuzzy set in such a 
way that: 

Definition 1: [39] A fuzzy subset 𝑇 of ℝ is characterized by a mapping Ã:ℝ → [0,1] known as the 
membership mapping of 𝑇, denoted as Ã:ℝ → [0,1]. Hence, for further investigation, we adopt this 
notation. We designate ℂ to represent the set of all fuzzy subsets of ℝ. 

In [40], Goetschel and Voxman introduced the main idea of fuzzy numbers as follows: 
Let Ã ∈ ℂ . Then, Ã is recognized as a fuzzy number or fuzzy interval if it satisfies the following 

properties: 
(1) Ã should be normal if there exists ⱺ ∈ ℝ and Ã(ⱺ) = 1; 

(2) Ã should be upper semi-continuous on ℝ if for given ⱺ ∈ ℝ, and 𝜀 > 0 there exist 𝛿 > 0 such 
that Ã(ⱺ) − Ã(𝘺) < 𝜀 for all 𝘺 ∈ ℝ with |ⱺ − 𝘺| < 𝛿; 

(3)Ã should be fuzzy convex, meaning Ã((1 − 𝜂)ⱺ + 𝜂𝘺) ≥ min(Ã(ⱺ), Ã(𝘺)), for all ⱺ, 𝘺 ∈ ℝ, and 

𝜂 ∈ [0, 1]; 
(4) Ã should be compactly supported, i.e., cl{ⱺ ∈ ℝ| Ã(ⱺ) > 0} is compact.  
We designate ℂ0 to represent the set of all fuzzy numbers of ℝ.  
Definition 2: [39] Given Ã ∈ ℂ0, the level sets or cut sets are defined as [Ã]𝚤 = {ⱺ ∈ ℝ| Ã(ⱺ) > 𝚤} 

for all 𝚤 ∈ [0, 1].  
From these definitions, we have  

  [Ã]𝚤 = [ʌ(𝚤), ʋ(𝚤)] (5) 

where 

ʌ(𝚤) = inf{ⱺ ∈ ℝ|Ã(ⱺ) ≥ 𝚤},  
ʋ(𝚤) = sup{ⱺ ∈ ℝ|Ã(ⱺ) ≥ 𝚤}.  

Remark 1: [40] For each interval [𝔳, 𝔶] ∈ 𝒳𝐶, there characteristic function [𝔳, 𝔶]̃: ℝ → [0,1] 
defined by 

 [𝔳, 𝔶]̃(ⱺ) = {
1        ⱺ ∈ [𝔳, 𝔶]

0     otherwise,
 (6) 
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So, in a way, we can consider that fuzzy numbers extend the set of closed intervals of real 
numbers, i.e., 𝒳𝐶 ⊆ ℂ0, and consequently ℝ ⊆ ℂ0 as well, since degenerated intervals can be 

interpreted as real numbers. Instead of representing [𝔶, 𝔶]̃, we simply use 𝔶̃. A fuzzy number 𝔶̃ is 
referred to as a crisp number or fuzzy singleton, as discussed in [40]. 

Recalling the concepts commonly found in the literature, if Ã, Õ ∈ ℂ0 and 𝚤 ∈ ℝ, then, for every 
𝚤 ∈ [0, 1], the arithmetic operations are defined as follows: 

[Ã ⊕ Õ]𝚤  = [Ã]𝚤 + [Õ]𝚤 (7) 

[Ã ⊗ Õ]𝚤 = [Ã]𝚤 × [ Õ]𝚤 (8) 

[𝜂 ⊙ Ã]𝚤 = 𝜂. [Ã]𝚤 (9) 

Theorem 2: [39] The space ℂ0 dealing with a supremum metric, i.e., for Ã, Õ ∈ ℂ0 

 𝑑∞(Ã, Õ) = sup
0≤𝚤≤1

𝑑𝐻([Ã]
𝚤, [Õ]𝚤) (10) 

is a complete metric space, where 𝐻 denotes the well-known Hausdorff metric on space of 
intervals. 

Now we recall some the concept of integral over fuzzy domain, where the integrable mappings 
are real-valued mappings over fuzzy domain.  

Definition 3: [37] If Ã ∈ ℂ0, and 𝛹: [Ã]𝚤 ⊆ ℝ𝑛 → ℝ is measurable on  [Ã]0 (and hence on every 
[Ã]𝚤, for all 𝚤 ∈ [0,1]), then we define 

(∫ 𝛹
 

Ã
)(𝚤) = ∫ 𝛹(ⱺ)

 

[Ã]𝚤
𝑑ⱺ (11) 

where the integral on the right-hand side is computed according to Lebesgue integration. We 
denote that 𝛹 is integrable over the fuzzy domain if the integral ∫ 𝛹(ⱺ)

 

[Ã]0
𝑑ⱺ is finite. In such 

instances, the mapping is defined as: 
 ∫ 𝛹
 

Ã
: [0, 1]  →  ℝ 

𝚤 →  (∫ 𝛹
 

Ã
)(𝚤) = ∫ 𝛹(ⱺ)

 

[Ã]𝚤
𝑑ⱺ (12) 

Remark 2: By employing Remark 1, we derive the traditional definition of the integral, applicable 
to real-valued functions that are integrable. 
 

3. Hölder-Like inequalities over triangular fuzzy 𝕃𝑷 space 
In this section, we start with the new version of the following triangular fuzzy 𝕃𝑷 space such that 
Considering the triangular fuzzy numbers (𝘛·𝘍·𝘕s)  Ã = (ⱷ;  𝜎, 𝜉), wherw ⱷ ∈ ℝ, and 𝜎, 𝜉 ∈ ℝ, 

thus 

Ã(ⱺ) =

{
 

 
ʎ−ⱷ+𝜎

𝜎
,    ʎ ∈ [ⱷ − 𝜎,ⱷ]

 ⱷ+𝜉−ʎ

𝜉
,     ʎ ∈ (ⱷ, ⱷ + 𝜉]

0,       otherwise.

 (13) 

Following is the geometric representation of 𝘛·𝘍·𝘕s (Figure 1): 
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Fig. 1. Trapezoidal fuzzy number 

whose parametrized form is [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)], for all 𝚤 ∈ [0,1].  Then,  

 𝕃𝑃[Ã] = {𝛹|𝛹: [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)] → ℝ  is measurable on[ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 −

𝚤)] and ∫ 𝛹(ⱺ)
 

[ⱷ−𝜎(1−𝚤),ⱷ+𝜉(1−𝚤)]
𝑑ⱺ < ∞, for all 𝚤 ∈ [0,1]}. 

A measurable mapping defined on Ã is said to be  𝔭th power sum able, where 𝔭 ≥ 1, if  

𝚤 →  (∫ 𝛹
 

Ã
)(𝚤) = ∫ 𝛹(ⱺ)

 

[Ã]𝚤
𝑑ⱺ < ∞ (14) 

 then, 𝕃𝑃 space is denoted and defined as 

𝕃𝔭[Ã] = {𝛹|𝛹: Ã → ℝ  is measurable on[Ã]𝚤and ∫ 𝛹(ⱺ)
 

[Ã]𝚤
𝑑ⱺ < ∞}.  

Remark 3: Utilizing Remark 1 and Remark 2, we derive the classical 𝕃𝔭[𝔳, 𝔶]̃ space. 

Theorem 3. (Hölder like inequality) Suppose 𝔭 > 1 and 
1

𝔭
+
1

𝔮
= 1. If 𝛹 and ℰ are two real functions 

defined on [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)] such that |𝛹|𝔭 and |ℰ|𝔮 are integrable functions on 
[Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)], then, for each 𝚤 ∈ [0,1] 

∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ ≤ [∫ |𝛹(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
[∫ |ℰ(ⱺ)|𝔮
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔮
 (15) 

with equality if and only if 𝛹 and ℰ are proportional.  
Proof. Since [Ã]0 = [ⱷ − 𝜎,ⱷ + 𝜉] (and hence on every [Ã]𝚤, for all 𝚤 ∈ [0,1]) 

∫ |𝛹(ⱺ)ℰ(ⱺ)|
 

[Ã]0
𝑑ⱺ = ∫ |𝛹(ⱺ)ℰ(ⱺ)|

ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ, on every [Ã]𝚤, for all 𝚤 ∈ [0,1]. 

Note that, If 𝜂 = [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔮
= 0, and 𝜉 = [∫ |ℰ(ⱺ)|𝔮

ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔮
= 0, it is obvious that 

equality will holds because functions 𝛹 and ℰ are measurable on [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ +
𝜉(1 − 𝚤)]. 

Considering 𝜂 = [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔮
≠ 0, and 𝜉 = [∫ |ℰ(ⱺ)|𝔮

ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔮
≠ 0 (and hence on every 

[Ã]𝚤, for all 𝚤 ∈ [0,1]).  

Case I. Considering 𝓊 =
|𝛹(ⱺ)|

𝜂
, 𝓋 =

|ℰ(ⱺ)|

𝜉
, Then, by using Auxiliary inequality, we have 

  
|𝛹(ⱺ)||ℰ(ⱺ)|

𝜂𝜉
≤
|𝛹(ⱺ)|𝔭

𝔭𝜂𝔭
+
|ℰ(ⱺ)|𝔮

𝔮𝜉𝔮
. 

Considering integration over [Ã]0 = [ⱷ − 𝜎,ⱷ + 𝜉] (and hence on every [Ã]𝚤, for all 𝚤 ∈ [0,1]) 
with respect to ⱺ, we have 
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1

𝜂𝜉
∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ ≤
1

𝔭𝜂𝔭
∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ +
1

𝔮𝜉𝔮
∫ |ℰ(ⱺ)|𝔮
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ, 

 
(and hence on every [Ã]𝚤, for all 𝚤 ∈ [0,1]), which implies that 

1

𝜂𝜉
∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ ≤
1

𝔭𝜂𝔭
(𝜂𝔭) +

1

𝔮𝜉𝔮
(𝜉𝔮), 

=
1

𝔭
+
1

𝔮
= 1, (and hence on every [Ã]𝚤, for all 𝚤 ∈ [0,1]). 

Then, 

∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ ≤ [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

[∫ |ℰ(ⱺ)|𝔮
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔮

, 

(and hence on every [Ã]𝚤, for all 𝚤 ∈ [0,1]), 
which implies that  

∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ ≤ [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ]

1
𝔭

[∫ |ℰ(ⱺ)|𝔮
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ]

1
𝔮

, 

for each 𝚤 ∈ [0,1]. 
 

Remark 5: If Ã = [𝔳, 𝔶]̃, then from (15), we get classical Hölder’s-like inequality (3) for real-valued 
mappings. 

 
a) Applications 

When we obtain |𝛹||ℰ| = (|𝛹|
1

𝔭) (|𝛹|
1

𝔮|ℰ|), as a straightforward outcome of the Hölder 

Inequality, we have the Hölder’s power-mean-like integral inequality that follows:  
Theorem 4. Suppose 𝔭 > 1. If 𝛹 and ℰ are two real functions defined on fuzzy number [Ã]𝚤 =

[ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)] such that |𝛹| and |𝛹|𝔭|ℰ| are integrable functions on [Ã]𝚤, then: 

∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ ≤ (∫ |𝛹(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
(∫ |𝛹(ⱺ)||ℰ(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1−
1

𝔭
 (16) 

Proof. By using same arguments like Theorem 3, it can be proved.  
  
If  𝔭 = 2 = 𝔮, then we attain the following outcome:  
Corollary 1: (Cauchy-Schwarz’s-like inequality) In accordance with the premises of Theorem 3, if 

𝔭 = 2 = 𝔮, then, it is evident that   

∫ |𝛹(ⱺ)ℰ(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ ≤ (∫ |𝛹(ⱺ)|2

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

2
(∫ |ℰ(ⱺ)|2

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

2
, (17) 

for each 𝚤 ∈ [0,1]. 
 
4. Minkowski-Like inequality 

Theorem 5. (Minkowski’s-like inequality) Suppose 𝔭 ≥ 1. If  𝛹 and ℰ are two real functions 
defined on [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)] such that |𝛹|𝔭 and |ℰ|𝔭 are integrable functions on 
[Ã]𝚤, then, for each 𝚤 ∈ [0,1]  

(∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
≤ [∫ |𝛹(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
+ [∫ |ℰ(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
. (18) 
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with equality if and only if 𝛹 and ℰ are proportional. 
If 1 > 𝔭 > 0, then 

 (∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
≥ [∫ |𝛹(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
+ [∫ |ℰ(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
. (19) 

Proof. Case I. Suppose that 𝔭 = 1 and we know that  
|𝛹(ⱺ) + ℰ(ⱺ)| ≤ |𝛹(ⱺ)| + |ℰ(ⱺ)|. 
Considering integration on both side over [Ã]0 = [ⱷ − 𝜎,ⱷ + 𝜉] (and hence on every [Ã]𝚤, for all 

𝚤 ∈ [0,1]), we have 

∫ |𝛹(ⱺ) + ℰ(ⱺ)|
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ ≤ ∫ |𝛹(ⱺ)|
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ + ∫ |ℰ(ⱺ)|
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ, 

which implies that  

∫ |𝛹(ⱺ) + ℰ(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ ≤ ∫ |𝛹(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ +∫ |ℰ(ⱺ)|
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ. 

Case II.  Consider that 𝔭 > 1 and that 𝔭 and 𝔮 are conjugate indices. Then, 

∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ = ∫ |𝛹(ⱺ) + ℰ(ⱺ)| |𝛹(ⱺ) + ℰ(ⱺ)|𝔭−1
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ 

= ∫ (|𝛹(ⱺ)| + |ℰ(ⱺ)|)|𝛹(ⱺ) + ℰ(ⱺ)|𝔭−1
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ 

= ∫ |𝛹(ⱺ)||𝛹(ⱺ) + ℰ(ⱺ)|𝔭−1
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ + ∫ |ℰ(ⱺ)||𝛹(ⱺ) + ℰ(ⱺ)|𝔭−1
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ, 

and hence on every [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)], for all 𝚤 ∈ [0,1]. 
By using Hölder like Inequality, we have 
 

∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ ≤ [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

[∫ |𝛹(ⱺ) + ℰ(ⱺ)|(𝔭−1)𝔮
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔮

 

  + [∫ |ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

[∫ |𝛹(ⱺ) + ℰ(ⱺ)|(𝔭−1)𝔮
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔮

 

= ([∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

+ [∫ |ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

)[∫ |𝛹(ⱺ) + ℰ(ⱺ)|(𝔭−1)𝔮
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔮

, 

which implies, we have 
 

∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ

≤ ([∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

+ [∫ |ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

) [∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔮

 

  ≤ ([∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔭
+ [∫ |ℰ(ⱺ)|𝔭

ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔭
) [(∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭

ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭
]

𝔭

𝔮

. 

From above inequality, we have  
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 ((∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭
)

𝔭

[(∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭
]

−
𝔭

𝔮

 

≤ [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

+ [∫ |ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

, 

implies that 

(∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ)

1
𝔭

≤ [∫ |𝛹(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

+ [∫ |ℰ(ⱺ)|𝔭
ⱷ+𝜉

ⱷ−𝜎

𝑑ⱺ]

1
𝔭

, 

and hence on every [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)], for all 𝚤 ∈ [0,1]. 
Hence, 

(∫ |𝛹(ⱺ) + ℰ(ⱺ)|𝔭
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
≤ [∫ |𝛹(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
+ [∫ |ℰ(ⱺ)|𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
. 

 

Remark 6. If Ã = [𝔳, 𝔶]̃, then from (18) and (19), we get classical Minkowski’s inequality for real-
valued mappings. 

Example 1. Consider the trapezoidal fuzzy numbers Ã = (2; 2,2), that is 

 Ã(ⱺ) =

{
 
 

 
 

1,            ʎ = 2
ʎ−

1

2

2
,      ʎ ∈ [0, 2]

 4−ʎ

2
,     ʎ ∈ [2, 2 + 2]

0,          otherwise,

 (20) 

whose parametrized form is [Ã]𝚤 = [2 + 2(𝚤 − 1), 2 + 2(1 − 𝚤)], for all 𝚤 ∈ [0,1]. Let 𝔭 =
1

2
, and   

𝛹(ⱺ) = ⱺ and ℰ(ⱺ) = ⱺ2 be the real-valued mappings on fuzzy domain Ã. 
 

∫ (𝛹(ⱺ))
𝔭+1

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ =
8√2

5
((2 − 𝚤)

5
2 − 𝚤

5
2) 

∫ (𝛹(ⱺ))
𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ =
4√2

3
((2 − 𝚤)

3
2 − 𝚤

3
2) 

∫ (ℰ(ⱺ))
𝔭+1

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ = 32(2 − 4𝚤 + 3𝚤2 − 𝚤3) 

∫ (ℰ(ⱺ))
𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ = 8 − 8𝚤 

 

 ∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ =

16

25
√2 ((2 − 𝚤)

5

2 − 𝚤
5

2) ((5 − 2𝚤)
5

2 − (1 + 2𝚤)
5

2) 

 ∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ =

8

9
√2((2 − 𝚤)

3

2 − 𝚤
3

2) ((5 − 2𝚤)
3

2 − (1 + 2𝚤)
3

2). 

Now 

   [∫ (𝛹(ⱺ))
𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭+1
= (

8√2

5
((2 − 𝚤)

5

2 − 𝚤
5

2))

2

3

 

   [∫ (ℰ(ⱺ))
𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭+1
= (32(2 − 4𝚤 + 3𝚤2 − 𝚤3))

2

3 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 1-13 

9 
 
 

 (∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭+1
= [

16

25
√2 ((2 − 𝚤)

5

2 − 𝚤
5

2) ((5 − 2𝚤)
5

2 − (1 + 2𝚤)
5

2)]

2

3
 

Then 

 [
16

25
√2((2 − 𝚤)

5

2 − 𝚤
5

2) ((5 − 2𝚤)
5

2 − (1 + 2𝚤)
5

2)]

2

3
 

 ≤ (
8√2

5
((2 − 𝚤)

5

2 − 𝚤
5

2))

2

3

+ (32(2 − 4𝚤 + 3𝚤2 − 𝚤3))
2

3, 

for each 𝚤 ∈ [0,1]. 
Hence, Minkowski-like inequality (18) is verified. For (19), we have 
 

     [∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
= (

4√2

3
((2 − 𝚤)

3

2 − 𝚤
3

2))

2

, 

[∫ (ℰ(ⱺ))
𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ]

1
𝔭

= (8 − 8𝚤)2, 

 (∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
= [

8

9
√2 ((2 − 𝚤)

3

2 − 𝚤
3

2) ((5 − 2𝚤)
3

2 − (1 + 2𝚤)
3

2)]
2

. 

Then, 

  [
8

9
√2 ((2 − 𝚤)

3

2 − 𝚤
3

2) ((5 − 2𝚤)
3

2 − (1 + 2𝚤)
3

2)]
2

≥ (
4√2

3
((2 − 𝚤)

3

2 − 𝚤
3

2))

2

+ (8 − 8𝚤)2, 

for each 𝚤 ∈ [0,1]. 
 

5. Beckenbach’s inequality 
Theorem 6. (Beckenbach’s inequality) Suppose 1 > 𝔭 > 0. If  𝛹 and ℰ are two real functions 

defined on [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)] and 𝛹(ⱺ) > 0, ℰ(ⱺ) > 0, then 
   

∫ (𝛹(ⱺ)+ℰ(ⱺ))
𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ

∫ (𝛹(ⱺ)+ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ
≤

∫ (𝛹(ⱺ))
𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ

∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ
+
∫ (ℰ(ⱺ))

𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ

∫ (ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ
. (21) 

with equality if 𝛹 and ℰ are proportional.  
Proof. Considering 

    𝑙1 = (∫ (𝛹)𝔭+1
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭+1
,  𝑙2 = (∫ (ℰ)𝔭+1

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭+1
 

and  

   𝐽1 = (∫ (𝛹)𝔭
ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
,  𝐽2 = (∫ (ℰ)𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
. 

Now by using Randon inequality for real number, we have 
 

𝑙1
𝔭+1

𝐽1
𝔭 +

𝑙2
𝔭+1

𝐽2
𝔭 ≥

(𝑙1 + 𝑙2)
𝔭+1

(𝐽1 + 𝐽2)𝔭
, 

that is to say 

        
∫ (𝛹(ⱺ))

𝔭+1ⱷ+𝜉
ⱷ−𝜎

𝑑ⱺ

∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ
+
∫ (ℰ(ⱺ))

𝔭+1ⱷ+𝜉
ⱷ−𝜎

𝑑ⱺ

∫ (ℰ(ⱺ))
𝔭ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ
≥

((∫ (𝛹(ⱺ))
𝔭+1ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ)

1
𝔭+1

+(∫ (ℰ(ⱺ))
𝔭+1ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ)

1
𝔭+1

)

𝔭+1

((∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ)

1
𝔭
+(∫ (ℰ(ⱺ))

𝔭ⱷ+𝜉
ⱷ−𝜎 𝑑ⱺ)

1
𝔭
)

𝔭  (22) 
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and hence on every [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)], for all 𝚤 ∈ [0,1]. 
Now because 1 > 𝔭 > 0, then 2 > 𝔭 + 1 > 1, from (21) and (22), we achieve 

[∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭+1ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔭+1
≤ (∫ (𝛹(ⱺ))

𝔭+1ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭+1
+ (∫ (ℰ(ⱺ))

𝔭+1ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭+1
  (23) 

and 

[∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ]

1

𝔭
≥ (∫ (𝛹(ⱺ))

𝔭ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭
+ (∫ (ℰ(ⱺ))

𝔭ⱷ+𝜉

ⱷ−𝜎
𝑑ⱺ)

1

𝔭
  (24) 

As we know that, if 𝑎, 𝑏, 𝑐 > 0, then we have 

 𝑎 ≥ 𝑐 ⇔
𝑎

𝑏
≥

𝑐

𝑏
, (25) 

 𝑏 ≤ 𝑐 ⇔
𝑎

𝑏
≥

𝑎

𝑐
 (26) 

Finally, from (23), (24), (25) and (26), we have 
 

 
((∫ (𝛹(ⱺ))

𝔭+1ⱷ+𝜉
ⱷ−𝜎 𝑑ⱺ)

1
𝔭+1

+(∫ (ℰ(ⱺ))
𝔭+1ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ)

1
𝔭+1

)

𝔭+1

((∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ)

1
𝔭
+(∫ (ℰ(ⱺ))

𝔭ⱷ+𝜉
ⱷ−𝜎 𝑑ⱺ)

1
𝔭
)

𝔭 ≥
∫ (𝛹(ⱺ)+ℰ(ⱺ))

𝔭+1ⱷ+𝜉
ⱷ−𝜎 𝑑ⱺ

∫ (𝛹(ⱺ)+ℰ(ⱺ))
𝔭ⱷ+𝜉

ⱷ−𝜎 𝑑ⱺ
 (27) 

and hence on every [Ã]𝚤 = [ⱷ − 𝜎(1 − 𝚤), ⱷ + 𝜉(1 − 𝚤)], for all 𝚤 ∈ [0,1]. Hence, from (26) and 
(27), we conclude the required result. 

 

Remark 7. If Ã = [𝔳, 𝔶]̃, then from (21), we get following classical Beckenbach’s inequality for real-
valued mappings. 

Example 2. Consider the trapezoidal fuzzy numbers Ã = (2; 2,2), with parametrized form [Ã]𝚤 =

[2 + 2(𝚤 − 1), 2 + 2(1 − 𝚤)], for all 𝚤 ∈ [0,1], taken from Example 1. Let 𝔭 =
1

2
, and   𝛹(ⱺ) = ⱺ and 

ℰ(ⱺ) = ⱺ2 be the real-valued mappings on fuzzy domain Ã. 
For (20), we have 
 

     [∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ]

1

𝔭
= (

4√2

3
((2 − 𝚤)

3

2 − 𝚤
3

2))

2

, 

[∫ (ℰ(ⱺ))
𝔭

ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)

𝑑ⱺ]

1
𝔭

= (8 − 8𝚤)2, 

 (∫ (𝛹(ⱺ) + ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ)

1

𝔭
= [

8

9
√2 ((2 − 𝚤)

3

2 − 𝚤
3

2) ((5 − 2𝚤)
3

2 − (1 + 2𝚤)
3

2)]
2

. 

Then, 

  [
8

9
√2 ((2 − 𝚤)

3

2 − 𝚤
3

2) ((5 − 2𝚤)
3

2 − (1 + 2𝚤)
3

2)]
2

≥ (
4√2

3
((2 − 𝚤)

3

2 − 𝚤
3

2))

2

+ (8 − 8𝚤)2, 

for each 𝚤 ∈ [0,1]. 
For, triangular Beckenbach inequality (21), we have 
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∫ (𝛹(ⱺ)+ℰ(ⱺ))

𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ

∫ (𝛹(ⱺ)+ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ

=

16

25
√2((2−𝚤)

5
2−𝚤

5
2)((5−2𝚤)

5
2−(1+2𝚤)

5
2)

8

9
√2((2−𝚤)

3
2−𝚤

3
2)((5−2𝚤)

3
2−(1+2𝚤)

3
2)

 

 
∫ (𝛹(ⱺ))

𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ

∫ (𝛹(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ
=

8√2

5
((2−𝚤)

5
2−𝚤

5
2)

4√2

3
((2−𝚤)

3
2−𝚤

3
2)

  

  
∫ (ℰ(ⱺ))

𝔭+1ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤) 𝑑ⱺ

∫ (ℰ(ⱺ))
𝔭ⱷ+𝜉(1−𝚤)

ⱷ−𝜎(1−𝚤)
𝑑ⱺ

=
32(2−4𝚤+3𝚤2−𝚤3)

8−8𝚤
 

From (25) 
16

25
√2((2−𝚤)

5
2−𝚤

5
2)((5−2𝚤)

5
2−(1+2𝚤)

5
2)

8

9
√2((2−𝚤)

3
2−𝚤

3
2)((5−2𝚤)

3
2−(1+2𝚤)

3
2)

≤

8√2

5
((2−𝚤)

5
2−𝚤

5
2)

4√2

3
((2−𝚤)

3
2−𝚤

3
2)

+
32(2−4𝚤+3𝚤2−𝚤3)

8−8𝚤
, 

 
for each 𝚤 ∈ [0,1]. 

 
6. Conclusion  

By utilizing the Lebesgue integral for real-valued functions over fuzzy domain as the 
corresponding expectation, we gain a reliable framework for managing and quantifying uncertainty. 
Building on this idea, we apply the Lebesgue integral to demonstrate triangular Hölder’s-like 
inequality for real-valued functions over fuzzy domain. Furthermore, we explore additional power 
mean Hölder’s-like inequality for real-valued functions over fuzzy domain to identify the appropriate 
form of triangular Hölder’s-like inequality. In contrast, we examine the connections between 
triangular Hölder, and triangular Cauchy–Schwarz, triangular Minkowski’s-like inequality, and 
triangular Beckenbach’s-like inequalities domain within the fuzzy interval setting. This analysis 
contributes to the generalization of several classical integral inequalities in the real-valued context. 
To conclude, we present updated versions of Hölder and Cauchy–Schwarz inequalities using 
triangular fuzzy number, incorporating submodular measures and comonotone functions—topics we 
plan to explore further in future work. Additionally, examples and applications are provided to 
illustrate the results achieved. 
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