

Spectrum of Operational Research

Journal homepage: www.sor-journal.org
ISSN: 3042-1470

Spectrum of Operational Research

Spectrum of Operational Research

A Study on DEMATEL Approach Under Uncertainty Environments

Saraswathi Appasamy^{1,*}

Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, India

ARTICLE INFO

Article history:

Received 29 October 2024 Received in revised form 30 January 2025 Accepted 8 March 2025 Available online 17 March 2025

Keywords:

Fuzzy sets; Triangular fuzzy number; Decision Making Trial and Evaluation Laboratory; DEMATEL; Decision making; MCDM.

ABSTRACT

A fuzzy set is a mathematical construct that assigns a membership grade to each element within a universe of discourse, representing the degree to which the element belongs to the set. This approach extends classical binary logic by allowing continuous values between 0 and 1, making it a natural framework for handling uncertainties and vague concepts often expressed in natural language. Fuzzy sets are particularly powerful in modelling real-world scenarios where ambiguity and imprecision are inherent, such as in human decision-making, linguistic expressions, and complex systems. This paper introduces a novel application of fuzzy logic by proposing a fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) method. DEMATEL is a well-established technique used to analyse cause-and-effect relationships within complex systems. Still, its traditional form relies on crisp values, which may not adequately capture the inherent uncertainties in real-world data. Our proposed method integrates triangular fuzzy numbers into the DEMATEL framework, enabling the representation and analysis of data with imprecision and vagueness. Specifically, we apply the fuzzy DEMATEL approach to study the cause-and-effect relationships among factors affecting transgender individuals, a population often marginalized and underrepresented in research. By leveraging triangular fuzzy numbers, our method provides a more nuanced and realistic representation of the uncertainties and complexities in the data. This approach not only enhances the accuracy of the analysis but also offers a meaningful way to interpret vague or subjective information, ultimately contributing to more informed decision-making and policy development for transgender communities.

1. Introduction

The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is a robust analytical tool for identifying and analyzing causal relationships among criteria within complex systems. Originating from the Geneva Research Center of the Battelle Memorial Institute, DEMATEL is grounded in digraph theory, enabling the classification of factors into cause-and-effect groups. This method is particularly effective in constructing and analyzing structural models, facilitating the extraction of relationships between intricate criteria. DEMATEL has gained significant traction in

E-mail address: saraswaa@srmist.edu.in

^{*} Corresponding author.

recent years due to its ability to visually represent and elucidate complex causal structures, aiding decision-making processes.

An empirical study was conducted to demonstrate the applicability of the DEMATEL method. Building on Zadeh's [1] proposition, linguistic assessments were employed instead of numerical values to evaluate criteria, leveraging linguistic variables to address the inherent imprecision in decision-making. This approach aligns with the principles of fuzzy logic, which provides a more nuanced framework for handling uncertainty. The integration of fuzzy logic with DEMATEL, as proposed by Wu et al., [2], has proven effective in segmenting competencies and enhancing decision-making in fuzzy environments. Gabus and Fontela [3] further established DEMATEL as a reliable technique for decision-making, while subsequent studies by Yang and Tzeng [4] and Lin et al., [5] utilized DEMATEL to analyze cause-and-effect relationships among evaluation criteria.

Hosseini and Tarokh [6] advanced the application of DEMATEL by incorporating interval type-2 fuzzy sets to capture the uncertainty associated with linguistic assessments. Similarly, Abbasi et al., [7] employed DEMATEL to identify critical risk factors affecting knowledge networks, such as policy risk, knowledge asset risk, and culture risk. Devadoss and Felix [8] extended the method to handle pairwise criteria expressed as triangular fuzzy numbers, demonstrating its suitability for group decision-making in fuzzy environments. Chen-Yi et al., [9] introduced a fuzzy DEMATEL methodology to model customer choice behavior, while Gharakhani et al., [10] integrated fuzzy AHP with DEMATEL to analyze supplier selection criteria. Kuei-Hu Chang et al., [11] simplified risk evaluation algorithms by combining fuzzy ordered weighted averaging (OWA) with DEMATEL.

Recent advancements have further expanded the scope of DEMATEL and fuzzy logic applications. Vidhya and Saraswathi [12] explored using fuzzy Floyd-Warshall and fuzzy rectangular algorithms for shortest-path problems. Broumi [13] developed an efficient approach for time-dependent shortest-path problems under Fermat Ean neutrosophic environments. Prakash and Appasamy [14] proposed optimal solutions for fully spherical fuzzy linear programming problems, while Saraswathi [15] introduced a fuzzy-trapezoidal DEMATEL approach for decision-making under uncertainty. Dharmaraj and Appasamy [16] applied a modified Gauss elimination technique to separable fuzzy nonlinear programming problems. Vidhya and Saraswathi [17] utilized an A* search algorithm for shortest-path problems under interval-valued Pythagorean fuzzy environments. Saraswathi [18] addressed minimal flow problems and proposed a triangular fuzzy clustering model under uncertainty. Yuvashri and Saraswathi [19] developed a novel multi-objective linear programming model under spherical fuzzy environments, and Karthick et al., [20] applied neutrosophic linear fractional programming with denominator objective restriction. Saraswathi and Nedumaran [21] conducted a comparative study on critical path identification using triangular fuzzy numbers.

The paper is organized as follows: Section one provides an introduction and literature review of DEMATEL. Section two discusses the concept of fuzzy numbers, arithmetic operations, and related results. Section three introduces the fuzzy DEMATEL method and performs calculations based on data collected through a survey among transgender individuals. Section four presents a numerical example to demonstrate the efficiency of the proposed method. Finally, section five offers conclusions and suggestions based on the discussion.

2. Preliminaries

Definition 1. A fuzzy set \widetilde{A} is a subset of a universe of discourse X, which is characterized by a membership function $\widetilde{A}: X \to [0,1]$. The function value $\widetilde{A}(x)$ is called the membership value, which represents the degree of truth that X is an element of a fuzzy set \widetilde{A} . It is assumed that $\widetilde{A}(x) \in [0,1]$

where $\widetilde{A}(x)=0$ reveals that x belongs completely to \widetilde{A} , while indicates that x does not belong to the fuzzy set \widetilde{A} .

Definition 2. A fuzzy set \widetilde{A} defined on the set of real numbers R is a fuzzy number if its membership function $\widetilde{A}:R\to[0,1]$ has the following characteristics [22]:

- i. \widetilde{A} is convex, that is $\widetilde{A}(\lambda x_1 + (1 \lambda x_2) \ge \min\{\widetilde{A}(x_1), \widetilde{A}(x_2)\}$, for all $x_1, x_2 \in R$ and $\lambda \in [0,1]$.
- ii. \widetilde{A} is normal i.e. there exists an $x \in R$ such that $\widetilde{A}(x) = 1$.
- iii. \widetilde{A} is piecewise continuous.

Definition 3. A fuzzy number \widetilde{A} on R is a triangular fuzzy number (TFN) or linear fuzzy number if its membership function $\widetilde{A}: R \to [0,1]$ has the following characteristics [1]:

$$\widetilde{A}(x) = \begin{cases} \frac{x - a_1}{a_2 - a_1}, & for a_1 \le x \le a_2 \\ \frac{a_3 - x}{a_3 - a_2}, & for a_2 \le x \le a_3 \\ 0, & elsewhere \end{cases}$$

We denote this triangular fuzzy number as $\widetilde{A} = (a_1, a_2, a_3)$.

2.1 Operations on Triangular Fuzzy Numbers

For arbitrary triangular fuzzy numbers $\tilde{A}=(a_1,a_2,a_3)$, $\tilde{B}=(b_1,b_2,b_3)$, and $*=\{+,-,\times,\div\}$ the arithmetic operations on the triangular fuzzy numbers. For any two triangular fuzzy numbers $\tilde{A}=(a_1,a_2,a_3)$, and $\tilde{B}=(b_1,b_2,b_3)$, we ca define the following operations [23]:

- i. Addition (+): $A+B=(a_1+b_1,a_2+b_2,a_3+b_3)$
- ii. Subtraction (-): $A B = (a_1 b_1, a_2 b_2, a_3 b_3)$
- iii. Multiplication (\otimes) : $k \otimes A = (ka_1, ka_2, ka_3), k \in R, k \ge 0$; $A \otimes b = (a_1b, a_2b, a_3b), a_1 \ge 0, a_2 \ge 0, a_3 \ge 0$

iv. Division
$$(\div)$$
: $(A)^{-1} = (a_1, b_1, c_1)^{-1} \cong \left(\frac{1}{c_1}, \frac{1}{b_1}, \frac{1}{a_1}\right), a_1 > 0, b_1 > 0, c_1 > 0$;
$$A \div B \cong \left(\frac{a_1}{c_2}, \frac{b_1}{b_2}, \frac{c_1}{a_2}\right), a_1 \ge 0, a_2 > 0$$

Definition 4. Linguistic variables are used as variables whose values are not numbers but linguistic terms. The linguistic variables approach usually converts fuzzy data into the Crisp Scales (CFCS) method based on determining the maximum and minimum of the fuzzy range. The total score can be found as a weighted average according to membership functions. Let $A_{ij} = (l_{ij}^n, m_{ij}^n, n_{ij}^n)$ mean the degree of criterion that affects criterion j and fuzzy questionnaires n where n=1,2,3,...,p.

Lemma 1. Suppose the square matrix $S = [s_{ij}]$ is given, where $0 \le s_{ij} \le 1$. Then, the term $M = S + S^2 + ... + S^k$ where $k \to \infty$ can be estimated by $M = S(1 - S)^{-1}$.

Proof:

$$Me = S + S^{2} + ... + S^{k} \Rightarrow S \times Me$$
 $= S^{2} + S^{3} + ... + S^{k+1} \Rightarrow Me - S \times Me$
 $= Me(1 - S) = (S + S^{2} + ... + S^{k}) - (S^{2} + S^{3} + ... + S^{k+1}) \Rightarrow S - S^{k+1}$
 $= S(1 - S^{k}) \Rightarrow Me \times (1 - S)$
 $= S \times (1 - S^{k}) \Rightarrow Me$
 $= \frac{S \times (1 - S^{k})}{1 - S}$

where $k \to \infty$ then $S^{k} \to 0$.

Therefore, $Me = \frac{S}{1 - S} = S(1 - S)^{-1} = M$.

3. Application of the DEMATEL Method to Analyze the Problems of Cause and Effect of Transgender

Transgender people experience some kinds of mental health problems that non-transgender people do. However, the stigma, discrimination, and internal conflict that many transgender people experience may place them at increased risk for certain mental health problems. Discrimination, lack of social support, and inadequate access to care can exacerbate mental health problems in transgender people, while support from peers, family, and helping professionals may act as protective factors. In our study, we consider the following problems faced by transgender people based on our interview and survey:

 C_1 - Poverty;

 C_2 - Identity;

 C_3 - Estrangement from family Harassment;

 C_4 - Harassment;

 C_5 - Mental illness (Psychological distress);

 C_6 - Homelessness;

 C_{τ} - Marginalization & social exclusion;

 C_8 - Discrimination;

 C_9 - Poor economic condition;

 C_{10} - Drug addiction;

 C_{11} - Crimes and violence;

 C_{12} - Legal Injustice.

3.1 The Survey was based on the following Questionnaire

- i. What is your perspective of transgender, and what is your sex preference?
- ii. Did the puberty blockers and the hormone treatments help you transition into a more female body?
- iii. Do you hate your body? Have you ever regretted who you are?
- iv. Do you always remember wanting, thinking, and believing from your earliest possible memories?
- v. Are you a girl/boy?
- vi. Before transitioning, have you been in relationships with the same sex or opposite sex?
- vii. If you have, what were the challenges you've had to come across?
- viii. Have you been sexually harassed?

- ix. Have you been physically abused?
- x. Did you get an education and a job? Are you financially supported?
- xi. If you can, will you give birth to a baby? How would you react if your baby grew up as a Tran?
- xii. Man, or a Tran's woman?
- xiii. What was the most helpful resource you found when learning about your transition?
- xiv. What was the hardest thing to adapt?
- xv. Are you aware of the organizations that are to help you people? If yes, how effective are they in this country?
- xvi. If you have a chance to change your gender, will you?

3.2 Application of the DEMATEL method

Step 1: Preparation of the assessment data matrix.

Experts prepare sets of pairwise comparisons regarding effects and direction between criteria. Then, the initial data can be obtained as the direct-relation matrix, which is an nxn matrix Z where each element z_{ij} is denoted as the degree to which criterion i affects the criterion j [24]. In this step, experts use the linguistic variables [25].

Step 2: Generating the fuzzy linguistic scale.

The pairwise comparison scale (Table 1) may be designated with five levels, where the scores of 0.07, 0.2, 0.4, 0.6, and 0.8 represent "Very Low influence", "Low influence", "Medium Influence", "High influence", and "Very high influence" respectively.

Table 1The Fuzzy linguistic scale

ine razzy impaistic scare		
Linguistic terms	Influence scores	Triangular fuzzy numbers
Very Low	0.07	(0, 0.07, 0.20)
Low	0.2	(0, 0.20, 0.40)
Medium	0.4	(0,20, 0.40, 0.60)
High	0.6	(0.40, 0.60, 0.80)
Very High	0.8	(0.6, 0.8, 1)

Step 3: Construction of the initial direct-relation matrix.

The initial direct-relation matrix [25-28] is nxn matrix obtained by pairwise comparisons in terms of influences and directions between criteria, in which z_{ij} is denoted as the degree to which the criterion i affects the criterion j, i.e., $Z = [z_{ij}]_{n \times n}$. The initial direct-relation matrix is generated using triangular fuzzy numbers (0, 0,0.20), (0, 0.20,0.40), (0.20, 0.40, 0.60), (0.40,0.60,0.80), (0.60, 0.80, 1).

Step 4: Preparation of the generalized direct-relation matrix.

By using triangular fuzzy numbers, the generalized direct-relation matrix is prepared. In this study, we implemented triangular fuzzy numbers (TFNs) as the most popular ones. TFNs are fuzzy numbers represented with three points.

Step 5: Calculating normalized direct-relation matrix.

The normalized direct-relation matrix $S = [s_{ij}]_{n \times n}$; $0 \le s_{ij} \le 1$ is obtained through the following equations in which all diagonal elements are equal to zero [26].

$$K = \frac{1}{\max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij}} i, j = 1, 2, ..., n$$

Step 6: Generating the total-relation matrix.

The total relation matrix is defined using the sum of rows and columns within the total-relation matrix, where *I* is denoted as the identity matrix.

$$M = \lim_{k \to \infty} (I + S_1 + S_2 + \dots + S_k) = (I - S)^{-1} = [m_{ij}]_{n \times n}$$

Step 7: Generating a causal diagram.

The sum of rows and the sum of the columns are separately denoted as vector D and vector R [27]. Finally, a causal and effect diagram can be acquired by mapping the dataset of (D+R, D-R), where the horizontal axis (D+R) is made by adding D to R, and the vertical axis (D-R) is made by subtracting R from D.

$$M = [m_{ii}], i, j = 1, 2, ..., n$$

$$D = \left[\sum_{j=1}^{n} m_{ij} \right]_{n \times 1} = [t_i]_{n \times 1}$$

$$R = \left[\sum_{i=1}^{n} m_{ij}\right]_{1 \times n} = \left[t_{j}\right]_{1 \times n}$$

4. Numerical Example

Step 1: Preparation of the assessment data matrix.

This step prepares an $n \times n$ fuzzy matrix for each corresponding expert. The assessment data matrix (Table 2) is generated by using linguistic variables "Very Low" (VL), "Low" (L), "Medium" (M), "Very High" (VH) and "High" (H) [28].

Table 2Assessment data table

7 133 0331	nene ac	ita tabie										
Crit.	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}	C_{12}
$C_{_1}$	0	VH	Н	М	VH	Н	VL	Н	L	M	L	VL
C_{2}	Н	0	Н	VH	М	VH	L	М	VL	Н	М	Н
C_3	M	VL	0	Н	VL	VL	VH	L	VL	М	М	VH
C_4	VH	Н	L	0	Н	М	VH	Н	Н	Н	VH	VL
C_5	Н	М	Н	VL	0	Н	VL	L	Н	L	Н	VH
C_6	VH	Н	Н	VH	Н	0	VL	М	Н	VH	М	Н
C_7	VL	L	М	VH	Н	М	0	Н	VH	M	Н	VH
C_8	M	L	VL	Н	L	L	Н	0	L	VH	L	Н
C_9	VH	L	М	Н	VH	Н	L	Н	0	L	VH	Н
C_{10}	L	VL	L	VH	М	Н	L	Н	L	0	М	VH
C_{11}	Н	VH	М	VH	Н	М	L	Н	VH	VL	0	Н
C_{12}	M	Н	L	Н	VH	М	VL	М	VL	L	VL	0

Step 2: Generating the linguistic scale.

For this step, the Linguistic scale table is defined as shown in Table 1.

Step 3: Preparation of the initial direct-relation matrix.

Using triangular fuzzy numbers (0,0,0.20), (0,0.20,0.40), (0.20,0.40,0.60), (0.40,0.60,0.80), (0.60,0.80,1) respectively, initial direct-relation matrix is prepared.

	\bigcap C_1	C_2	C_3	C_4	C_5	C_6
C_1	0	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)	(0,20, 0.40, 0.60)	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)
C_2	(0.40, 0.60, 0.80)	0	(0.40, 0.60, 0.80)	(0.60, 0.80, 1)	(0,20, 0.40, 0.60)	(0.60, 0.80, 1)
C_3	(0,20, 0.40, 0.60)	(0, 0, 0.20)	0	(0.40, 0.60, 0.80)	(0, 0, 0.20)	(0, 0, 0.20)
. C_4	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)	(0, 0.20, 0.40)	0	(0.40, 0.60, 0.80)	(0,20, 0.40, 0.60)
C_5	(0.40, 0.60, 0.80)	(0,20, 0.40, 0.60)	(0.40, 0.60, 0.80)	(0, 0, 0.20)	0	(0.40, 0.60, 0.80)
C_6	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)	(0.40, 0.60, 0.80)	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)	0
C_7	(0, 0, 0.20)	(0, 0.20, 0.40)	(0,20, 0.40, 0.60)	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)	(0,20, 0.40, 0.60)
C_8	(0,20, 0.40, 0.60)	(0, 0.20, 0.40)	(0, 0, 0.20)	(0.40, 0.60, 0.80)	(0, 0.20, 0.40)	(0, 0, 0.20)
C_9	(0.60, 0.80, 1)	(0, 0.20, 0.40)	(0,20, 0.40, 0.60)	(0.40, 0.60, 0.80)	(0.60, 0.80, 1)	(0.40, 0.60, 0.80)
C_{10}	(0, 0.20, 0.40)	(0, 0, 0.20)	(0, 0.20, 0.40)	(0.60, 0.80, 1)	(0,20, 0.40, 0.60)	(0.40, 0.60, 0.80)
C_{11}	(0.40, 0.60, 0.80)	(0.60, 0.80, 1)	(0,20, 0.40, 0.60)	(0.40, 0.60, 0.80)	(0.40, 0.60, 0.80)	(0,20, 0.40, 0.60)
C_{12}	(0,20, 0.40, 0.60)	(0.40, 0.60, 0.80)	(0, 0.20, 0.40)	(0.40, 0.60, 0.80)	(0.60, 0.80, 1)	(0,20, 0.40, 0.60)
Г	C-	Co	C _o	Cus	<i>C.</i>	<i>C</i>
C	C_7 (0, 0, 0.20)	C_8 (0.40, 0.60, 0.80)	C_9 (0, 0.20, 0.40)	C_{10} (0. 20, 0.40, 0.60)	C_{11} (0, 0.20, 0.40)	$\begin{bmatrix} C_{12} \\ (0, 0, 0.20) \end{bmatrix}$
C_1	(0, 0, 0.20)	(0.40, 0.60, 0.80)	(0, 0.20, 0.40)	(0,20, 0.40, 0.60)	(0, 0.20, 0.40)	(0, 0, 0.20)
C_2	(0, 0, 0.20) (0, 0.20, 0.40)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60)	(0, 0.20, 0.40) (0, 0, 0.20)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0,20, 0.40, 0.60)	
C_2 C_3	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60)	(0, 0, 0.20) (0.40, 0.60, 0.80)
$egin{array}{c c} C_2 \\ C_3 \\ C_4 \\ \end{array}$	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1)	(0, 0, 0.20)
$egin{array}{c} C_2 \\ C_3 \\ C_4 \\ C_5 \\ \end{array}$	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1) (0, 0, 0.20)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80)	(0, 0, 0.20) (0.40, 0.60, 0.80) (0, 0, 0.20)
C_{2} C_{3} C_{4} C_{5} C_{6}	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0,20, 0.40, 0.60)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0.60, 0.80, 1)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60)	(0, 0, 0.20) (0.40, 0.60, 0.80)
C_{2} C_{3} C_{4} C_{5} C_{6} C_{7}	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1) (0, 0, 0.20) (0, 0, 0.20)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.60, 0.80, 1)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0,20, 0.40, 0.60)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80)	(0, 0, 0.20) (0.40, 0.60, 0.80) (0, 0, 0.20) (0.40, 0.60, 0.80)
C_{2} C_{3} C_{4} C_{5} C_{6} C_{7} C_{8}	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1) (0, 0, 0.20) (0, 0, 0.20) 0 (0.40, 0.60, 0.80)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0, 0.20, 0.40)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0,20, 0.40, 0.60) (0.60, 0.80, 1)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0, 0.20, 0.40)	(0, 0, 0.20) (0.40, 0.60, 0.80) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80)
C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1) (0, 0, 0.20) (0, 0, 0.20) 0 (0.40, 0.60, 0.80) (0, 0.20, 0.40)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80) 0 (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0, 0.20, 0.40)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0, 0.20, 0.40)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0.60, 0.80, 1)	(0, 0, 0.20) (0.40, 0.60, 0.80) (0, 0, 0.20) (0.40, 0.60, 0.80)
C_{2} C_{3} C_{4} C_{5} C_{6} C_{7} C_{8} C_{9} C_{10}	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1) (0, 0, 0.20) (0, 0, 0.20) 0 (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0, 0.20, 0.40)	(0.40, 0.60, 0.80) (0, 20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0, 20, 0.40, 0.60) (0.40, 0.60, 0.80) 0 (0.40, 0.60, 0.80) (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0, 0.20, 0.40) 0 (0, 0.20, 0.40)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0, 0.20, 0.40) 0	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0.60, 0.80, 1) (0,20, 0.40, 0.60)	(0, 0, 0.20) (0.40, 0.60, 0.80) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80)
C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_9	(0, 0, 0.20) (0, 0.20, 0.40) (0.60, 0.80, 1) (0.60, 0.80, 1) (0, 0, 0.20) (0, 0, 0.20) 0 (0.40, 0.60, 0.80) (0, 0.20, 0.40)	(0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80) 0 (0.40, 0.60, 0.80)	(0, 0.20, 0.40) (0, 0, 0.20) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0, 0.20, 0.40)	(0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0, 0.20, 0.40) (0.40, 0.60, 0.80) (0.60, 0.80, 1) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0, 0.20, 0.40)	(0, 0.20, 0.40) (0,20, 0.40, 0.60) (0,20, 0.40, 0.60) (0.60, 0.80, 1) (0.40, 0.60, 0.80) (0,20, 0.40, 0.60) (0.40, 0.60, 0.80) (0, 0.20, 0.40) (0.60, 0.80, 1)	(0, 0, 0.20) (0.40, 0.60, 0.80) (0, 0, 0.20) (0.40, 0.60, 0.80) (0.40, 0.60, 0.80)

Step 4: Preparation of the Generalized Direct-Relation Matrix. The generalized direct-relation matrix is presented below.

	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}	C_{12}	
C_1	0	0.8	0.6	0.4	0.8	0.6	0.067	0.6	0.2	0.4	0.2	0.067	
C_2	0.6	0	0.6	0.8	0.4	0.8	0.2	0.4	0.067	0.6	0.4	0.6	
C_3	0.4	0.067	0	0.6	0.067	0.067	0.8	0.2	0.067	0.4	0.4	0.8	
$C_{\scriptscriptstyle 4}$	0.	0.6	0.2	0	0.6	0.4	0.8	0.6	0.6	0.6	0.2	0.067	
C_5	0.6	0.4	0.6	0.067	0	0.6	0.067	0.2	0.6	0.2	0.6	0.8	
C_6	0.8	0.6	0.6	0.8	0.6	0	0.2	0.4	0.6	0.8	0.4	0.6	
C_7	0.067	0.2	0.4	0.8	0.6	0.4	0	0.6	0.8	0.4	0.6	0.8	
C_8	0.4	0.2	0.067	0.6	0.2	0.2	0.6	0	0.2	0.8	0.2	0.6	
C_9	0.8	0.2	0.4	0.6	0.8	0.6	0.2	0.6	0	0.2	0.2	0.6	
C_{10}	0.2	0.067	0.2	0.8	0.4	0.6	0.2	0.6	0.2	0	0.4	0.8	
C_{11}	0.6	0.8	0.4	0.6	0.6	0.4	0.067	0.6	0.8	0.067	0	0.6	
C_{12}	0.4	0.6	0.2	0.6	0.8	0.4	0.067	0.4	0.067	0.2	0.067	0	

Step 5: Preparation of the normalization matrix. The normalization matrix is performed as follows.

	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}	C_{12}
C_1	0	0.12765	0.09574	0.06383	0.12765	0.09574	0.0107	0.09574	0.03191	0.06383	0.03191	0.0107
C_2	0.09574	0	0.09574	0.12765	0.06383	0.12765	0.03191	0.06383	0.0107	0.09574	0.06383	0.09574
C_3	0.06383	0.0107	0	0.09574	0.0107	0.0107	0.12765	0.03191	0.0107	0.06383	0.06383	0.12765
C_4	0.12765	0.09574	0.03191	0	0.09574	0.06383	0.12765	0.09574	0.09574	0.09574	0.03191	0.0107
C_5	0.09574	0.06383	0.09574	0.0107	0	0.09574	0.0107	0.03191	0.09574	0.03191	0.09574	0.12765
C_6	0.12765	0.6	0.09574	0.12765	0.09574	0	0.03191	0.06383	0.09574	0.12765	0.06383	0.09574
C_7	0.0107	0.03191	0.06383	0.12765	0.09574	0.06383	0	0.09574	0.12765	0.06383	0.09574	0.12765
C_8	0.06383	0.03191	0.0107	0.09574	0.03191	0.03191	0.09574	0	0.03191	0.12765	0.03191	0.09574
C_9	0.12765	0.03191	0.06383	0.09574	0.12765	0.09574	0.03191	0.09574	0	0.03191	0.03191	0.09574
C_{10}	0.03191	0.0107	0.03191	0.12765	0.06383	0.09574	0.03191	0.09574	0.03191	0	0.06383	0.12765
C_{11}	0.09574	0.12765	0.06383	0.09574	0.09574	0.06383	0.0107	0.09574	0.12765	0.0107	0	0.09574
C_{12}	0.06383	0.09574	0.03191	0.09574	0.12765	0.06383	0.0107	0.06383	0.0107	0.03191	0.0107	0

Step 6: Computation of the total direct relation matrix. The total relation matrix is determined as follows:

	\mathbf{C}_{1}	C_2	C_3	\mathbf{C}_4	C_5	C_6	\mathbf{C}_7	C_8	\mathbf{C}_{9}	C_{10}	C_{11}	C ₁₂
C_1	0.111537	0.203362	0.173188	0.180675	0.219503	0.185661	0.077085	0.180814	0.106097	0.155507	0.12219	0.131505
\mathbf{C}_2	0.21459	0.106875	0.180962	0.257574	0.186753	0.225353	0.106546	0.17184	0.101866	0.196015	0.16218	0.215899
\mathbb{C}_3	0.141013	0.086878	0.060411	0.190179	0.107882	0.087854	0.172665	0.115192	0.080604	0.129312	0.133691	0.208076
\mathbf{C}_4	0.255442	0.204726	0.139162	0.158036	0.233811	0.18833	0.194618	0.218892	0.198065	0.201931	0.23756	0.16361
C_5	0.200754	0.154873	0.173204	0.133398	0.114452	0.184064	0.067952	0.125972	0.161281	0.115288	0.173351	0.229787
C_6	0.261163	0.206894	0.194305	0.272508	0.234036	0.128725	0.09507	0.188032	0.185506	0.232493	0.179007	0.233341
C ₇	0.147441	0.138587	0.15137	0.259473	0.224824	0.172662	0.077555	0.206135	0.216297	0.161856	0.202019	0.253948
C_8	0.254005	0.10709	0.076421	0.196266	0.130995	0.115838	0.143086	0.088984	0.100996	0.194423	0.110289	0.185777
C_9	0.13754	0.150221	0.161409	0.229289	0.25497	0.204916	0.104761	0.206219	0.099794	0.137606	0.225501	0.223498
C ₁₀	0.225487	0.101798	0.102676	0.230483	0.167944	0.176549	0.092679	0.181477	0.108942	0.08687	0.14512	0.220878
C_{11}	0.152361	0.227322	0.159892	0.230642	0.223885	0.178413	0.105581	0.203918	0.207696	0.119984	0.110029	0.221228
C ₁₂	0.06383	0.164247	0.100551	0.182016	0.205146	0.141741	0.061903	0.135508	0.074529	0.108022	0.086449	0.090672

Step 7: Generating the causal diagram. In this step, the sum of rows and the columns are separately denoted as vector D and vector R (Table 3).

Table 3
The degree of central role (D+R) and (D-R)

Crit.	D	R	D+R	D-R	Rank
$C_{_1}$	1.847124	2.249138	4.096262	-0.40201	9
C_2	2.126153	1.852873	3.979026	0.27328	5
C_3	1.513748	1.673551	3.187299	-0.1598	8
C_4	2.394183	2.520239	4.914422	-0.12606	7
C_5	1.834376	2.304201	4.138577	-0.46983	11
C_6	2.41108	1.990097	4.401177	0.420983	3
C_7	2.212167	1.299501	3.511668	0.912666	1
C_8	1.59797	2.022983	3.620953	-0.42501	10
C_9	2.252189	1.641673	3.893862	0.610516	2
C_{10}	1.752956	1.839307	3.592263	-0.08635	6
C_{11}	2.214077	1.887386	4.101463	0.326691	4
C_{12}	1.503145	2.378219	3.881364	-0.87507	12

Based on the values shown in Table 2, we can generate the causal diagram in Figure 1.

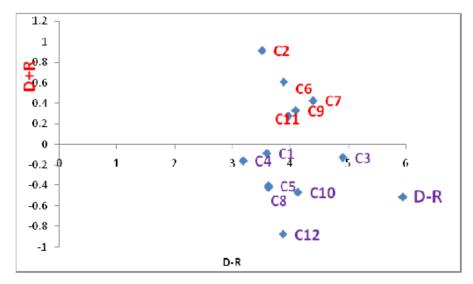


Fig. 1. Casual diagram

In Figure 1, D+R is the cause group, and D-R is the effective group.

5. Discussion and Conclusion

Figure 1 shows that the evaluation criteria were visually divided into the cause group, including the categories C_2 , C_6 , C_7 , C_9 , C_{11} and the effect group, which are factors responsible for effective groups of transgender people. It is clear that transgender facing a lot of problems, from the simplest personal relations to the most general social ignorance of the society. Table 3 also reveals the ranking of the fuzzy DEMATEL method attributes $C_7 > C_9 > C_6 > C_{11} > C_2 > C_{10} > C_4 > C_3 > C_1 > C_8 > C_5 > C_{12}$.

The findings presented in Table 3 highlight the multifaceted challenges faced by transgender individuals in their daily lives. A significant factor underpinning these challenges, as identified in this study, is the role of hormonal disorders, which contribute to both physiological and psychological difficulties. If these underlying hormonal issues are not adequately addressed, the well-being and progress of the transgender community will remain hindered. It is imperative to recognize that transgender individuals are entitled to the same fundamental rights as others, including freedom of expression, access to education, healthcare, and public services, and opportunities for employment and political participation. Governments and policymakers must take proactive measures to ensure the implementation of inclusive policies, such as job reservations, educational support, and counseling services, to promote the social and economic integration of transgender individuals. Furthermore, societal acceptance and respect for their dignity must be prioritized to eliminate discrimination and barriers to full social participation.

This study has several limitations that should be acknowledged. First, the research primarily focuses on hormonal disorders as a contributing factor to the challenges faced by transgender individuals, which may overlook other significant social, cultural, and economic determinants. Second, the data used for analysis was limited to specific regions or populations, potentially reducing the generalizability of the findings to broader contexts. Third, the study relied on secondary data and calculations, which may not fully capture the lived experiences and nuanced perspectives of transgender individuals. Future studies should incorporate longitudinal designs and qualitative methods to provide a more comprehensive understanding of these issues.

Future research should explore the intersectionality of factors affecting transgender individuals, including socioeconomic status, cultural norms, and legal frameworks, to develop a more holistic understanding of their challenges. Investigations into the long-term effects of hormonal therapies and their accessibility in different regions could provide valuable insights into improving healthcare outcomes for this population. Additionally, studies focusing on the effectiveness of policy interventions, such as job reservations and educational programs, are needed to evaluate their impact on the social and economic empowerment of transgender individuals. Collaborative research involving transgender communities, healthcare providers, and policymakers is essential to ensure that future initiatives are inclusive, evidence-based, and responsive to the needs of this marginalized group. Finally, exploring global best practices and comparative studies across countries could offer innovative solutions for advancing transgender rights and well-being worldwide.

Acknowledgment

This research was not funded by any grant.

Conflicts of Interest

The authors declare no conflicts of interest.

References

- [1] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [2] Wu, W. W., & Lee, Y. T. (2007). Developing global managers' competencies using the fuzzy DEMATEL method. Expert systems with applications, 32(2), 499-507. https://doi.org/10.1016/j.eswa.2005.12.005
- [3] Gabus, A., & Fontela, E. (1972). World problems and invitation to further thoughts within the framework of DEMATEL. Battelle Geneva Research Centre.
- [4] Yang, J. L., & Tzeng, G. H. (2011). An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method. Expert systems with applications, 38(3), 1417-1424. https://doi.org/10.1016/j.eswa.2010.07.048
- [5] Lin, K. P., Tseng, M. L., & Pai, P. F. (2018). Sustainable supply chain management using approximate fuzzy DEMATEL method. Resources, Conservation and Recycling, 128, 134-142. https://doi.org/10.1016/j.resconrec.2016.11.017
- [6] Hosseini, M.B., & Tarokh, M.J. (2011). Interval of type-2 fuzzy set extension of DEMATEL method. Computational Intelligence and Information Technology, 250, 157–165.
- [7] Abbasi, M., Hosnavi, R., & Tabrizi, B. (2013). An application of fuzzy DEMATEL in risks evaluation of knowledge-based networks. Journal of Optimization, 1–7.
- [8] Devadoss, A. V., & Felix, A. (2013). A Fuzzy DEMATEL approach to study cause and effect relationship of youth violence. International Journal of Computing Algorithm, 2, 363-372.
- [9] Chen-Yi, H., Chen, K., & Gwo-Hshiung, T. (2007). FMCDM with Fuzzy DEMATEL Approach for Customers' Choice Behavior Model. International Journal of Fuzzy Systems, 9(4), 236-246.
- [10] Gharakhani, D., Taromian, S., Dadras, K., & Fakhar, A. Z. (2014, October 17–18). Fuzzy AHP and fuzzy DEMATEL methods for supplier selection criteria. International Conference on Computer Science and Information Systems (ICSIS'2014), Dubai, UAE.
- [11] Chang, K. H., & Cheng, C. H. (2011). Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. Journal of Intelligent Manufacturing, 22, 113-129. https://doi.org/10.1007/s10845-009-0266-x
- [12] Vidhya, K., & Saraswathi, A. (2021). An improved A* search algorithm for the shortest path under interval-valued Pythagorean fuzzy environment. Granular Computing, 8(2), 241–251. https://doi.org/10.1007/s41066-022-00326-1
- [13] Broumi, S. (2024). An efficient approach for solving time-dependent shortest path problem under Fermatean neutrosophic environment. Neutrosophic Sets and Systems, 63(1), 1–6.
- [14] Prakash, Y., & Appasamy, S. (2023). Optimal solution for fully spherical fuzzy linear programming problem. Mathematical Modelling of Engineering Problems, 10(5), 1611–1618.
- [15] Saraswathi, A. (2019). A fuzzy-trapezoidal DEMATEL approach method for solving decision-making problems under uncertainty. AIP Conference Proceedings, 2112(1), 020076-1–12.

- [16] Dharmaraj, B., & Appasamy, S. (2023). Application of a modified Gauss elimination technique for separable fuzzy nonlinear programming problems. Mathematical Modelling of Engineering Problems, 10(4), 1481–1486.
- [17] Vidhya, K., & Saraswathi, A. (2023). A novel method for finding the shortest path with two objectives under trapezoidal intuitionistic fuzzy arc costs. International Journal of Analysis and Applications, 21, 121–121.
- [18] Saraswathi, A. (2024). A study on triangular fuzzy clustering model under uncertainty. Uncertainty Discourse and Applications, 1(1), 20–28.
- [19] Yuvashri, P., & Saraswathi, A. (2024). A novel approach for multi-objective linear programming model under spherical fuzzy environment and its application. Journal of Intelligent and Fuzzy Systems, 46(2), 3259–3280.
- [20] Karthick, S., Saraswathi, A., & Baranidharan, B. (2024). Neutrosophic linear fractional programming problem using denominator objective restriction method. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 31(2), 89–101.
- [21] Saraswathi, A., & Nedumaran, P. (2024). Comparative study to find the critical path using triangular fuzzy number. Journal of computational analysis and applications, 33(5), 345-354.
- [22] Narang, M., Kumar, A., & Dhawan, R. (2023). A fuzzy extension of MEREC method using parabolic measure and its applications. Journal of Decision Analytics and Intelligent Computing, 3(1), 33-46. https://doi.org/10.31181/jdaic10020042023n
- [23] Nezhad, M. Z., Nazarian-Jashnabadi, J., Rezazadeh, J., Mehraeen, M., & Bagheri, R. (2023). Assessing Dimensions Influencing IoT Implementation Readiness in Industries: A Fuzzy DEMATEL and Fuzzy AHP Analysis. Journal of Soft Computing and Decision Analytics, 1(1), 102-123. https://doi.org/10.31181/jscda11202312
- [24] Kolour, H. R., Momayezi, V., & Momayezi, F. (2025). Enhancing Supplier Selection in Public Manufacturing: A Hybrid Multi-Criteria Decision-Making Approach. Spectrum of Decision Making and Applications, 3(1), 1-20. https://doi.org/10.31181/sdmap31202629
- [25] Dwijendra, N. K. A., Akhmadeev, R., Tumanov, D., Kosov, M., Shoar, S., & Banaitis, A. (2021). Modeling social impacts of high-rise residential buildings during the post-occupancy phase using DEMATEL method: A case study. Buildings, 11(11), 504. https://doi.org/10.3390/buildings11110504
- [26] Hsu, C.-Y., Chen, K.-T., & Tzeng, G.-H. (2007). FMCDM with fuzzy DEMATEL approach for customer's choice behavior model. International Journal of Fuzzy Systems, 9, 236–246.
- [27] Devadoss, V., & Felix, A. (2013). A fuzzy DEMATEL approach to study cause and effect relationship of youth violence. International Journal of Computing Algorithm Integrated Intelligent Research, 2, 363–372.
- [28] Seker, S., & Zavadskas, E. K. (2017). Application of fuzzy DEMATEL method for analyzing occupational risks on construction sites. Sustainability, 9(11), 2083. https://doi.org/10.3390/su9112083