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The endeavor to align TODIM (an acronym in Portuguese of interactive and mul-
ticriteria decision making) with prospect theory has given rise to the develop-
ment of several variant methods, including power TODIM, exponential TODIM,
and logarithmic TODIM. However, these existing methods fail to address high-
order uncertainty within generalized orthopair fuzzy environments. To overcome
this limitation, we propose an interpretable robust TODIM approach tailored for
generalized orthopair fuzzy settings. First, we extend these TODIM methods to
accommodate generalized orthopair fuzzy settings, integrating them into a uni-
fied framework. Second, we introduce a set of robustness analysis measures for
the extended TODIM method, accounting for simultaneous uncertainty in criteria
weights, value function coefficients, and the membership and non-membership
degrees of generalized orthopair fuzzy sets. Third, we develop a programming
model to determine representative criteria weights based on these robustness
analysis measures, followed by an approach to recommend an interpretable and
robust ranking within the extended TODIM framework. Finally, we present an il-
lustrative example to demonstrate the application of this interpretable and robust
TODIM approach, accompanied by a comparative analysis to highlight its advan-
tages.

1. Introduction

Multiple criteria decision analysis (MCDA) is a frequently encountered process in human activi-
ties, involving the selection, ranking, or sorting of alternatives based on multiple and often conflicting
criteria [1, 2]. Traditional MCDA methods can be classified into value-based methods and outranking-
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based methods. The AHP (Analytic Hierarchy Process) and ANP (Analytic Network Process) methods
are examples of the former, while ELECTRE (an acronym in French of elimination and choice translating
reality) methods belong to the latter category. However, TODIM (an acronym in Portuguese of inter-
active and multicriteria decision making), which is originally proposed by Gomes & Lima [3, 4], can
be viewed as a distinct category, as it combines elements of the multiattribute utility theory from the
AHP method with features of the ELECTRE methods [5]. Another distinguishing feature of the TODIM
method is its incorporation of psychological behavioral factors of decision-makers (DMs) in situations
involving risk and uncertainty, grounded in the principles of prospect theory [6]. To date, the TODIM
method has been successfully applied across a wide range of industries, including healthcare, real
estate, energy, manufacturing, and service sectors.

The basic principle of TODIM depends on a value function (or Phi function) that calculates the
global dominance degree of one alternative over others across all criteria under consideration. A key
step in this process involves calculating the dominance degree of one alternative over another for a
given criterion using the Phi function. These individual dominance degrees are subsequently aggre-
gated to determine the global dominance degrees for each alternative, which are then used to rank
alternatives. In the original formulation of the TODIM method [3, 4], the Phi function was constructed
using a square root structure, incorporating the weight of the considered criterion within this struc-
ture. However, this construction could yield ambiguous or equivocal results in certain scenarios [7].
Subsequently, Lee and Shih [8] generalized the original square root structure by introducing a power
function, retaining the weight component within the power function. This generalization, however,
resulted in a structure that was not fully aligned with the value function of prospect theory. To ad-
dress this, Llamazares [9] proposed a revised version of the power Phi function, where the weight
component is no longer integrated into the power function. For simplicity, this variant of TODIM is
referred to as power TODIM (PowTODIM) in this paper. Recently, Leoneti and Gomes [10] proposed
new variants of TODIM, substituting the power function in PowTODIM with exponential or logarith-
mic functions. For simplicity, these derived variants of TODIM are referred to as exponential TODIM
(ExpTODIM) and logarithmic TODIM (LogTODIM), respectively. It should be noted that the value func-
tions in PowTODIM, ExpTODIM, and LogTODIM all exhibit an S-shaped curve, each adhering to the
value function defined in prospect theory. A key distinction among these value functions lies in their
bounds: the value function in ExpTODIM is limited to a range between -\ and 1, whereas the value
functions in PowTODIM and LogTODIM are unbounded.

The accurate characterization of DMs’ value judgments and preferences is fundamental to MCDA.
In all the TODIM methods discussed earlier, the evaluation of an alternative for a given criterion is
based on binary logic. As a result, these methods are limited to accepting evaluations in the form
of crisp numbers and are ill-equipped to address scenarios where DMs can only provide uncertain or
imprecise evaluations. To overcome this limitation, various extensions of the original TODIM method
have been developed to accommodate evaluations expressed as fuzzy sets [11], intuitionistic fuzzy
sets (IFSs) [7], Pythagorean fuzzy sets (PFSs) [12], generalized orthopair fuzzy sets (GOFSs) [13], inter-
val type-2 fuzzy sets [14], hybrid data [15], and more. Among these evaluation frameworks, GOFSs
stand out as a promising tool due to their flexibility in characterizing the degrees of support (member-
ship) and opposition (non-membership) of an alternative relative to a given criterion. In GOFSs, the
sum of the gth power of the membership degree and the non-membership degree is constrained to
be less than or equal to one. When ¢ equals 1, GOFSs reduce to IFSs; when ¢ equals 2, they simplify
to PFSs. As the parameter ¢ (referred to as the rung) increases, the range of acceptable orthopairs ex-
pands, granting DMs greater freedom to articulate their preferences. In this context, GOFSs are often
termed g-rung orthopair fuzzy sets (¢-ROFSs) when fixed at a specific rung ¢. The notable advantages
of g-ROFSs have attracted considerable interest from numerous researchers, sparking extensive inves-
tigations in the field of MCDA [16]. Our paper is motivated by the following factors:
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(1) Few efforts have been made to extend the PowTODIM, ExpTODIM, and LogTODIM methods to
generalized orthopair fuzzy environments. A notable exception is the work by Liu et al. [17], who ex-
tended the LogTODIM method to accommodate ¢-ROFSs. However, their approach relies solely on a
distance measure to assess the absolute differences between ¢-ROFSs, neglecting their relative differ-
ences. This oversight can distort decision outcomes, especially in cases involving extreme evaluations.
Furthermore, existing studies fail to address high-order uncertainty in g-ROFSs when applying the Pow-
TODIM, ExpTODIM, and LogTODIM methods. Although Zhang et al. [18] investigated the uncertainty
inherent in membership and non-membership degrees of g-ROFSs, they did not explicitly incorporate
the psychological behavior of DMs, which is a fundamental aspect of these TODIM methods.

(2) The existing approaches inadequately address simultaneous uncertainty in criteria weights,
value function coefficients, and the membership and non-membership degrees of ¢-ROFSs. While
SMAA-TODIM [19] and SMAA-ExpTODIM [20] have been developed to account for simultaneous un-
certainty in criteria measurements, criteria weights, and value function coefficients, they are not de-
signed to accommodate ¢-ROFSs. Additionally, these methods do not provide robustness analysis for
the PowTODIM and LogTODIM variants.

(3) The final ranking of alternatives produced by SMAA-TODIM [19] and SMAA-ExpTODIM [20] lack
interpretability for DMs, as these SMAA-based methods fail to provide representative criteria weights
underlying the final rankings.

The aim of this paper is to propose an interpretable robust TODIM approach within the context
of generalized orthopair fuzzy environments, addressing the limitations outlined previously. The orig-
inality of our study can be summarized by highlighting the following key aspects:

(1) We extend the PowTODIM, ExpTODIM, and LogTODIM methods to generalized orthopair fuzzy
settings by introducing a grey relational coefficient-based relative closeness degree, unifying these
three methods within a single framework.

(2) We introduce a set of robustness analysis measures for the extended PowTODIM, ExpTODIM,
and LogTODIM methods, rooted in the principles of SMAA (Stochastic Multiobjective Acceptability
Analysis). This analysis effectively handles simultaneous uncertainty in criteria weights, value function
coefficients, and the high-order uncertainty inherent in g-ROFSs.

(3) We develop a mathematical programming model to determine representative criteria weights
by leveraging measures derived from the robustness analysis.

(4) We propose an approach to generate an interpretable robust ranking from the extended TODIM
framework.

The paper is structured as follows. Section 2 offers a concise overview of the foundational concepts
underlying the TODIM methods and g-rung orthopair fuzzy sets. Section 3 details the extension of
the PowTODIM, ExpTODIM, and LogTODIM methods to generalized orthopair fuzzy environments. In
Section 4, we introduce several robustness analysis measures for the extended TODIM method and
propose a method for determining representative criteria weights to facilitate the interpretation of
the resulting robust ranking. Section 5 provides an illustrative example and a comparison analysis to
demonstrate the application and advantages of the proposed approach. Finally, Section 6 concludes
the paper.

2. Preliminaries

In this section, we first review the TODIM methods and then briefly discuss some concepts related
to ¢g-ROFSs.
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2.1 The TODIM methods

TODIM is a MCDA method inspired by prospect theory [6] and initially developed by Gomes and
Lima [3, 4] to address ranking and choice problems. Since its introduction, it has evolved into multi-
ple variants, most of which are based on three types of Phi functions, as discussed in Leoneti et al.
[10]. These developments have given rise to the PowTODIM, ExpTODIM, LogTODIM methods. The
application of these methods typically involves the following steps.

Step 1. Normalize the original decision matrix & = [x;;],,,x» to a standard decision matrix y = [y;;]mxn
using a linear technique, where z;; represents the measurement of an alternative a; (i € M =
{1,2,...,m}) in terms of a criterion g; (j € N = {1,2,...,n}).

Step 2. For eachi,h € M and j € N, calculate the dominance degree of alternative a; over a;, for
criterion g; using Phi function ¢;(a;, ap):

wilai, an) = wij(a;, ap) (1)

where w; is the weight of criterion g; such that w; > 0(j = 1,2,...,n) and 37 w; = 1, and
Y;(a;, ap) is a value function. In particular, the value function in the TODIM methods can take the
power, exponential, and logarithmic formulations:

e The power value function
(Yij — Ynz)", if (yij — ynj) >0
¢§ow(aia an) = 40, if (yij - yhj) =0 (2)
—Xynj — yi3)?, i (yij — ynj) <O
e The exponential value function
1 — 10*P(yij*yhj)7 if (yij _ yhj> >0
V5 (ai, an) = {0, if (Yij —yn;) =0 (3)
— A1 — 10°PWns=¥i) ) i (g5 — ynj) < 0
e The logarithmic value function
log(1 + 10p(yij — Ynj)), if (Yij — Ynj) >0
U (s, an) = 4 0, if (yi5 — ynj) =0 (4)
—Alog(1 + 10p(yn; — yi5)), i (Yij — yns) <O

such that the value function coefficients satisfy 0 < o, 5 < 1, A > 1, p € {1,2,3,4,5}.
Step 3. For each i, h € M, calculate the dominance ratio of alternative a; over a;, by Eq. (5):

0i(a;, ap) = Z%‘(ai,ah)- (5)
=1

Step 4. For each 7 € M, calculate the global dominance degree of alternative a; based on the sum of
the dominance ratio and normalize these degrees between o and 1 by Eq. (6):

Yo 0ilag, ap) — mingens Y pey 0i(ag, ap)

maxiens Y pey 0i(i, ap) — mingenr >y 0i(az, ap)

m(a;) = (6)

Step 5. Rank the alternatives according to 7(a;)(i = 1,2, ..., m) in descending order. A larger value
of (a;) corresponds to a better alternative.
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2.2 Some concepts on q-ROFSs

In the following, we review the basic concept of the ¢-ROFS and its associated distance measure.
Definition 1 [21]. Let X be a nonempty fixed set, then a ¢-ROFS () on X can be expressed as follows:

Q={<z a9(x), o) > |r e X}, (7)

where ag(z) : X — [0,1] and Sg(z) : X — [0, 1] denote the membership degree and the non-
membership degree of x to (), respectively, which satisfy the following condition for each x € X:
0 < (ag(x))? + (Bo(z))? < 1(g > 1). The degree of indeterminacy of element x € X is given as
mo(e) = (1 - (aq(a)) — (Bola))1)

For convenience, (a;(z), 53(x)) can be called a g-rung orthopair fuzzy number (q-ROFN) [22],
denoted by § = (ay, f).
Definition 2 [23]. Let 53 = («ay, /1) and o = (aw, B2) be two ¢-ROFNs, the Minkowski distance
between 7, and 9, is defined as

1 1 Y
(i) = (glon — el + 51~ 5 @)

where p > 1. Especially, the Minkowski distance reduces to Hamming distance and Euclidean distance
when p = 1 and p = 2, respectively.

3. Extended TODIM to accommodate g-rung orthopair fuzzy settings

The TODIM methods traditionally accommodate decision matrix with precise values, neglecting
situations where evaluations of a given alternative across all considered criteria are represented by
¢-ROFNs. In this section, we aim to extend the TODIM methods to handle g-rung orthopair fuzzy
information, which we will refer to as the ¢gROF-ETODIM method throughout the rest of the paper.

Consider a MCDM problem that a set of m alternatives (a;,i € {1,2,...,m}) are to be evaluated
or ranked in terms of n criteria (g;, j € {1,2,...,n}). Assume that the measurement of alternative ¢;
w.r.t criterion g; is represented by a ¢-ROFN, denoted as (11, ;). The orthopair (u;;, v;;) captures the
degrees of membership and non-membership, respectively, indicating the extent to which alternative
a; supports and opposes criterion g;. The considered criteria are assumed to be independent, and the
weights for them are denoted by w = [wj]1 «,, such that w; > 0 and Z?Zl w; = 1. The specific steps
of the gROF-ETODIM method are presented as follows.

Step 1. Normalize the g-rung orthopair fuzzy decision matrix & = [;;]mxn = ((fij, Vij) )mxn to Matrix
r = (Tij)mxn = ([ij, Vij)mxn DY transforming cost-type criteria into benefit-type criteria, such
that (f;;, 7;;) = (uij, vi;) for benefit criteria and (fi;;, 7;;) = (v4j, pi;) for cost criteria.

Step 2. Transform the normalized ¢-rung orthopair fuzzy decision matrix into a grey relational coefficient-

based relative closeness degree matrix.

For a normalized ¢-rung orthopair fuzzy decision matrix r = (7 )mxn With 7;; = (fi;;, 7;;), let
ri = (1,0) and r; = (0,1) be the absolute positive ideal point (APIS) and absolute negative ideal
point (ANIS) under criterion g;, respectively. Following the principle of grey relational analysis, we
define the grey relational coefficient (GRC) between the alternative a; and the APIS in terms of criterion
g; as follows:

+

J

dr (7, 7’;’) + x max; max; dP(7;, 7’;_)

min; min; d? (75, ") + x max; max; d? (7, 1)

: (9)

0" (7yy) =
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and the GRC between the alternative a; and the ANIS in terms of criterion g; as follows:

min; ming dP(7;;, ;") + x max; max; dF (74,7 ) (10)
Y

o (Fiy) = dr (75,75 ) + x max; max; dP (75,7 )
where y in Egs. (9) and (10) is a distinguishing coefficient such that 0 < x < 1, and the distance
between different ¢-ROFNs can be measured using Eq. (8).

The GRC 0" (745) (j = 1,2,...,n) represents the degree of correlation between the alternative a;
and the APIS. A higher value of o™ (7;;) (j = 1,2, ..., n) indicates a stronger correlation with APIS and
suggests that the alternative is more favorable. On the other hand, the GRC o™ (7;;) (j = 1,2,...,n)
represents the degree of correlation between the alternative a; and the ANIS. A higher value of 0™ (7;)
(7 = 1,2,...,n) indicates a stronger correlation with ANIS and suggests that the alternative is less
favorable.

For a given normalized decision matrix (7;;)mxn, We can formulate two GRC matrices, AT =
[0 (i) ]mxn @and A7 = [07(7i;)]mxn, based on Egs. (9) and (10), respectively. To comprehensively
evaluate the performance of the considered alternative under a given criterion, inspired by the TOPSIS
method, the individual relative closeness degree 7(7;;) in terms of GRCs can be defined as:

o™ (74)

_  i=12...mji=12.. . (1)
Fij) + 0~ (7)

n(ri;) = o

where the higher the value of n(7;;) (i = 1,2,...,m,j = 1,2,...,n) indicates a better performance

of the alternative.

Step 3. Choose a value function formulation from the following three types and determine the
coefficients of the selected value function.

e The power value function
V7 (ai, an) = {0, if n(7i;) = n(7h;) (12)

e The exponential value function

1 — 1()—p(n(7%-,7)—n(fhj))7 i 77(7%') > U(fhj)
V5 (ag,an) = 4 0, if n(7i;) = n(7n;) (13)
— A1 — 10=POEr) =0 - if (7)< 1(Fhg)

e The logarithmic value function
log(1 + 10p(n(75;) — n(74;))), if n(7ij) > n(7ns)
Vi (ai,an) = 40, if n(7i;) = n(7n;) (14)
—Alog(1 + 10p(n(Fa;) — n(7i5))), i n(Fiy) < n(Fns)
Note that in the extended TODIM method, we define the parameter p to take values within the
real number domain [1, 5] to accommodate group decision-making scenarios. In such contexts, each

DM can express his/her individual preference for the value of p, and the collective opinion for the
value of p can be any real number between 1 and 5.
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Step 4. For each i, h € M, calculate the dominance ratio of alternative a; over a; by Eq. (15):

> i it (aiy ap),  if power value function is considered
di(ai,an) = § D25 wijb;™* (@i, an),  if exponential value function is considered (15)
n log . . . . . .
ijl w;;*(ai, ap),  if logarithmic value function is considered

Step 5. For each ¢ € M, calculate the performance of alternative a; based on the sum of the
dominance ratio by Eq. (16):

m(a;) = Z@'(CM, an). (16)
h=1
Alternatively, normalize the values of 7(a;) (i = 1,2, ...,m) between o and 1 by Eq. (17):
m(a;) — min;eps m(a;
max;e s 7(a;) — mingeps m(a;)
Step 6. Rank the alternatives according to 7(a;) or @(a;) (i = 1,2,...,m) in descending order. A

larger value of 7(a;) or 7(a;) corresponds to a better alternative.

The implementation of the ¢qROF-ETODIM method involves several parameters, such as criteria
weights and coefficients of the chosen value function. If the DMs can reach a consensus on these
parameters and obtain precise values, the ranking of alternatives can be directly determined using
the outlined steps. However, if the group can only provide partial preference information or cannot
provide any preference information—and even the membership and non-membership preferences of
the alternatives cannot be accurately determined—robustness analysis for the gqROF-ETODIM method
becomes necessary.

4. Interpretable robust ranking for the extended TODIM

The SMAA framework provides a robust approach for addressing uncertainty in model parameters.
For instance, SMAA-TODIM and SMAA-ExpTODIM have been developed to manage uncertainty in the
traditional TODIM and ExpTODIM methods, respectively. However, these approaches are not well-
suited for handling ¢g-rung orthopair fuzzy information. Furthermore, the DMs often struggle to inter-
pret the robust rankings produced by SMAA-TODIM and SMAA-ExpTODIM. In this section, we apply
SMAA principles to evaluate the robustness of ranking results derived from the gROF-ETODIM method
when confronted with uncertain, imprecise, or incomplete information. Additionally, we propose a
model to identify representative criteria weights based on robustness analysis measures, thereby en-
hancing the understanding and interpretation of the resulting robust ranking.

4.1 Robustness analysis for the extended TODIM

The gROF-ETODIM method can be regarded as a real-valued function, ; = T(i, , w, s), which as-
sign a score m; for alternative a; by inputting a decision matrix  and some preference parameters, such
as the criteria weighs w, and the other parameters, denoted by a vector s, such that s = [«, 5, \, X, p]
if the power value function is considered, and s = [p, A, x, p| if the exponential or logarithmic value
function is considered. When applying the gROF-ETODIM method, the uncertainty in measuring the
extent to which an alternative supports or opposes a given criterion, that is, the membership degree
and non-membership degree, can be respectively modeled by stochastic variables, 51‘; and £;’J in fea-
sible space X C [0, 1]™*™, whose joint probability density function (pdf) can be denoted by fx (&)
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and fx(&¥), respectively. Therefore, the pdf for criteria measurements can be formulated as a prod-
uct fr(&) = fx(&")fx (&), where I represents a feasible criterion measurement space such that
['={&=(&r ¢&¥) : &* &Y € X}. In cases where the DMs cannot provide any preference informa-
tion on the preference parameters under consideration, the uncertainty in these parameters w, s can
be represented as independent variables within the spaces I/, and S, respectively, such that

IV:{weR”wg>Qj:Lzuwmz)%:1}
j=1

S={seR:0<a<1,0<f<1,A>1,0<x<1p>1}

if the power value function is considered, or
S={seR':1<p<51>10<x<1p>1}

if the exponential or logarithmic value function is considered. Let the joint pdf of w, and s be denoted
by fw(w) and fs(s), respectively. If the DMs can provide some preference on w, and s, this infor-
mation can be translated into corresponding constraints and incorporated into the respective feasible
spaces, resulting in restricted feasible spaces. To avoid heavy notation, we use the same symbols for
these restricted spaces in the rest of the paper.

Based on the principles of SMAA, we define a ranking function for the gROF-ETODIM method as
follows:

rank(i, z, w,s) =1+ Z k(T(h,z,w,s) > T(i,z,w,s)), (18)
hi
where x(true) = 1 and x(false) = 0.

The SMAA-gROF-ETODIM method is therefore based on the definition of a set of measures, which
is described as follows:

¢ Therank acceptability index (RAI), which represents the probability of an alternative a; achieving
the rth position in the final ranking, is defined by

b = /fr(é)/ fw(w)fs(s)dwdsdg. (19)
r (w,s)eW x S:rank(i,@,w,s)=r

e The strict pairwise winning index (SPWI), which represents the probability that alternative a; is
strictly preferred to ay, is defined by

fW(w)fS(s)/Ffp(ﬁ)dﬁdwds. (20)

S __
Pix = /
(w,8)eW x Sirank(i,z,w,s)<rank(k,z,w,s)
e The weak pairwise winning index (WPWI), which represents the probability that alternative q;
is better than or indifferent to a;, is defined by
1

w __ .S
Pir = Pir, + B /
(w,s)eW x Srank(i,z,w,s)=rank(k,z,w,s)

Fur () f(s) /F (&) dedwds.  (21)

It is evident that the WPWI satisfies the condition p}; + p}’ = 1.
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¢ The central weight vector (CWV), which represents a vector of criteria weights that reflect the
preferences of a typical DM who ranks alternative q; in the first place, is defined by

wg Hu/ff /‘ e (w0 fs(puddsde (22)

e The central coefficient vector (CCV), which represents a vector of coefficient that reflect the
preferences of a typical DM who ranks alternative a; in the first place, is defined by

52 N/ﬁ / e wlw) () sdwdsdg (23)
wse X W X S:rank(z,x,w,s

The calculation of these robustness measures can be estimated using Monte Carlo simulation,
as demonstrated in the work of Zhang et al. [18]. It is important to note that multiple rounds of
robustness analysis can be conducted if the DMs are not satisfied with the calculated results of these
measures. In such cases, the DMs can update their preference information regarding the considered
parameters to refine the analysis.

4.2 Determination of representative criteria weights from pairwise winning index

The CWV as defined in Section 4.1 can provide value information on representative criteria weights
for an alternative achieving the first position, rather than for the resulting robust ranking. To facilitate
the interpretation of the final ranking, this section introduces a method for determining representative
criteria weights based on WPWI. Therefore, it is reasonable to assume that the DMs have, through
multiple rounds of robustness analysis, identified satisfactory values for all parameters except the
criteria weights. However, in certain cases, uncertainty in  and s may still persist. To address this, we
can use their expected values instead. Thus, we propose the following model for a general situation
in the spirit of Arcidiacono et al. [24]:

¥ = max ¢

ot T(i, E(x),w, E(s)) — T(h, E(x),w, E(s)) > 9(p}} —0.5),Y(i,h) € M x M :p}Y >0.5,i#h
C|wew
(24)

where E(x;;) = ([ & fx (£5)del;, [ & fx (€5)de;), E(s) = [ sfs(s)ds, and thevalues of p}} (i, h =
1,2,...,m)are calculated under the settlngs of E(x;;) and E(s).

The solutions of the model may fall into several distinct cases. (1) When ¢* > 0, it indicates
the existence of at least one set of weights that makes a; > a; and piv,‘l’ > 0.5 equivalent for any
pair of alternatives. (2) Conversely, when 9¥* < 0, it suggests the presence of at least one pair of
alternatives where q; is inferior to a;, despite pf}f > (.5. In this scenario, the model can be understood
as determining the criteria weights that minimize the deviation between the ranking of alternatives
predicted by the extended TODIM method and that predicted by the WPWI. (3) If the model proves
infeasible, it signals inconsistency in the preference information provided by the DMs. In such cases,
the conflicting constraints can be identified using the approach proposed by Mousseau et al. [25],
after which the solution reverts to either case (1) or (2). Thus, regardless of whether ¢* > 0 or 9* < 0,
it is always possible to derive a set of representative criteria weights. However, this set may not be
unique. To address this, we denote the constraints in model (24) by ¥ and introduce an additional
constraint ¥ = ¥* to 7, forming a new constraint space 2V". Ultimately, a unique set of criteria
weights can be elicited by calculating the centroid of this new feasible space through Monte Carlo
simulation.

22



Spectrum of operational research
Volume 3, Issue 1 (2026) 14-28

4.3 Approach for deriving an interpretable robust ranking from the extended TODIM

In this section, we present an approach for deriving an interpretable robust ranking from the gROF-
ETODIM method, building on the work outlined in Sections 4.1 and 4.2. The detailed steps are as
follows:

Step 0. Identify an MCDA problem and collect evaluations of alternatives based on the criteria under
consideration, utilizing the tool of ¢-ROFSs.

Step 1. Select an appropriate value function type from the available options—exponential value func-
tion, logarithmic value function, or power value function—and proceed to normalize the g-rung or-
thopair fuzzy decision matrix according to Section 3.

Step 2. The DMs are invited to provide (or update) preference information on certain parameters,
such as criteria weights and value function coefficients. If these parameters are precisely determined,
proceed to Step 5. Otherwise, continue to the next step.

Step 3. Generate samples from the feasible spaces of the considered parameters using the hit-and-run
algorithm [26]. Based on these samples, estimate the robustness measures developed in Section 4.1.
If the DMs are satisfied with the calculated results, proceed to the next step; otherwise, return to Step
2.

Step 4. Determine representative criteria weights by solving Model (24) and calculating the associated
centroid of space 2V". If the DMs are satisfied, proceed to the next step; otherwise, return to Step 2.
Step 5. Implement the extended TODIM method developed in Section 3 to derive a representative
robust ranking of alternatives. If necessary, provide an interpretation of the results.

5. An illustrative example and comparative analysis

5.1 An illustrative example

Toillustrate the application of the proposed method, an example is considered, involving the evalu-
ation of five emergency response plans developed for COVID-19 based on four criteria: rescue capacity
(g1), response capacity (g»), response cost (g3), and potential impact of public opinion (g4). The ex-
ample is adapted from Zhang et al. [18]. Table 1 presents the normalized evaluations of alternatives
across these four criteria.

Table 1
The normalized evaluations of alternatives under a given set of criteria

g1 g2
a; ([0.4,0.5],[0.3,0.4]) ([0.7,0.8],[0.5,0.6])
az ([0.3,0.4],[0.7,0.8]) ([0.4,0.5],[0.4,0.5])
as ([0.2,0.3],[0.5,0.6]) ([0.5,0.6],[0.4,0.5])
aqy {[0.7,0.8],[0.2,0.3]) ([0.4,0.5],[0.0,0.1])
as {[0.4,0.5],[0.5,0.6]) ([0.5,0.6],[0.0,0.1])

g3 g4
a; ((0.5,0.6,0.7,0.8), (0.2,0.3,0.4,0.5)) ((0.4,0.5,0.6,0.7), (0.0,0.1,0.2,0.3))
as {(0.4,0.5,0.6,0.7),(0.0,0.1,0.2,0.3))  ((0.5,0.6,0.7,0.8),(0.6,0.7,0.8,0.9))
as {(0.2,0.3,0.3,0.4),(0.3,0.4,0.4,0.5)) ((0.1,0.2,0.3,0.4),(0.5,0.6,0.7,0.8))
aqs {(0.3,0.4,0.5,0.6),(0.4,0.5,0.6,0.7)) ((0.4,0.5,0.6,0.7),(0.1,0.2,0.3,0.4))
as ((0.6,0.7,0.8,0.9), (0.2,0.3,0.4,0.5))  ((0.3,0.4,0.5,0.6), (0.5,0.6,0.7,0.8))

The DMs unanimously agreed to choose the exponential value function for the problem at hand,
and their preferences for some parametersare 1 < p < 3,04 < x <0.6,1 <p <52 <A< 25.
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At the initial stage of the analysis, the DMs provide no information on the weights of criteria. Case
1is thus formulated based on the given information. Then we implemented the robustness analysis
developed in Section 4.1. Tables 2-4 show the calculated results.

Table 2
The matrix of RAIs (in %) (Case 1)
by b7 b} by b7

a1 40.98 44.63 14.36 0.03 o}

ay 0.84 4.9 14.7 64.38 15.18
ag O o o 15.62  84.38
as 43.35 3113 13.32  11.81 0.39
as 14.83 19.34 57.62 8.6 0.05

Table 3
The matrix of WPWIs (in %) (Case 1)
ai a3z as ay as
a; 50 98.28 100 50.53 7775
as 172 50 84.82 13.24 12.06
as O 1518 50 0.39  0.05

ay 49.47 8676 99.61 50 69.4
as 22.25 8794 99.95 30.6 50

Table 4
The matrix of CWVs and CCVs (Case 1)

w1 w2 w3 Wy p X P A

a; 0.1748 0.1614 0.3454 0.3185 2.2204 3.0132 0.499 2.0114
as 0.0643 0.0743 07427 0.1187 2.2127 3.2209 0.5041 2.0114
a3 NA NA NA NA NA NA NA NA

as 0.3712 0.2697 0.1162 0.2429 2.2239 2.9509 0O.501 1.9801
as 0.1178 0.4525 0.3443 0.0854 2.2189 3.1384 0.4983 1.9925

However, the DMs are not satisfied with the results in Case. They suggest to conduct a new round
of analysis by providing additional preferences on criteria weights, that is, w; > 2ws, wy > w3,0.1 <
w; < 0.4,wy > 0.05,0.05 < w3 < 0.15,wy > 0.05, with the preferences for other parameters
remain the same as in Case 1. Building upon this, Case 2 is thus formulated. Tables 5-6 shows some
results.

Table 5
The matrix of RAIs (in %) (Case 2)

I N

a; 3412 65.88 0 o o

a; O o 15.41 83.8 079
as O o o 0.86 99.14
a, 65.88 3412 O o o

as O o 84.59 15.34 0.07
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Table 6
The matrix of WPWIs (in %) (Case 2)

aq a2 as Gy as
a; 50 100 100 3412 100
ay O 50 99.21 O 15.41
as O 0.79 50 o 0.07
as 65.88 100 100 50 100
as; O 84.59 9993 O 50

Based on Tables 5 and 6, we can derive a robust ranking of alternatives, that is, ay = a1 > a5 >
as = asz. However, the DMs need to explain the results to stakeholders. Thus, we formulated the
following model to determine representative criteria weights:

¥ = max v

(T(i, BE(x),w, E(s)) — T(h, E(z),w, E(s)) > 9(p!V —0.5),V(i,h) € M x M : p/ >0.5,i #h
wy > 2w, Wy > W3

st.40.1 <w <0.4,0.05 < ws <0.15

wy > 0.05,wy > 0.05

4
\ijl w; = 1

(25)

By solving the model, we have ©* = 2.4848. Subsequently, by calculating the centroid of the sapce
V", we get the unique and most representative criteria weights w = (0.3435,0.1253, 0.0500, 0.4812).
Then we implemented the extended TODIM method, and get that 7w(a;) = 0.8981, 7(as) = 0.2156,
7(asz) = 0,7(as) = 1,and w(as) = 0.4214. That is, the interpretable robust ranking of the alternatives
under considerationis ay = a1 = a5 > as > as.

5.2 Comparative analysis

To the best of our knowledge, two types of robustness analysis for TODIM methods have been
developed in the literature, namely SMAA-TODIM [19] and SMAA-ExpTODIM [20]. However, neither
of these methods is capable of handling generalized orthopair fuzzy information. Additionally, while
both methods can derive a robust ranking, they lack the ability to provide an explanation for the
resulting ranking. The method proposed in this paper addresses these gaps. More detailed analysis
can be found in Table 7.

Table 7
Comparison analysis with other robust ranking methods

Can the method handle

The type of . . Is the ranking Is the ranking
. generalized orthopair fuzzy .
value function . . robust? interpretable?
information?
SMAA-TODIM [19] Power value function No Yes No
SMAA-ExpTODIM [20] Exponential value function No Yes No
The proposed approach  Power/exponential/logarithmic  Yes Yes Yes
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6. Conclusions

This study introduces an interpretable robust TODIM approach within the context of generalized
orthopair fuzzy settings for the first time. In the proposed approach, a grey relational coefficient-based
relative closeness degree is introduced to extend the PowTODIM, ExpTODIM, and LogTODIM meth-
ods, adapting them to generalized orthopair fuzzy settings. Additionally, a set of robustness analysis
measures is developed for the extended TODIM method, accounting for simultaneous uncertainty in
criteria weights, value function coefficients, and the membership and non-membership degrees of
generalized orthopair fuzzy sets. This enhancement enables the extended TODIM method to gener-
ate robust rankings in the presence of high-order uncertainty. Finally, a technique for determining
representative criteria weights is developed to enhance the interpretability of the robust recommen-
dations.

In this study, the criteria are assumed to be independent, an assumption that could be relaxed
in future research to incorporate positive and negative interactions between them. In addition, ex-
tending the application of the proposed interpretable robust TODIM approach to recommendation
systems with online reviews presents an intriguing opportunity, given the flexible representation of
online reviews through generalized orthopair fuzzy sets.
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