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The endeavor to align TODIM (an acronym in Portuguese of interactive and mul-ticriteria decision making) with prospect theory has given rise to the develop-ment of several variant methods, including power TODIM, exponential TODIM,and logarithmic TODIM. However, these existing methods fail to address high-order uncertainty within generalized orthopair fuzzy environments. To overcomethis limitation, we propose an interpretable robust TODIM approach tailored forgeneralized orthopair fuzzy settings. First, we extend these TODIM methods toaccommodate generalized orthopair fuzzy settings, integrating them into a uni-fied framework. Second, we introduce a set of robustness analysis measures forthe extended TODIM method, accounting for simultaneous uncertainty in criteriaweights, value function coefficients, and the membership and non-membershipdegrees of generalized orthopair fuzzy sets. Third, we develop a programmingmodel to determine representative criteria weights based on these robustnessanalysis measures, followed by an approach to recommend an interpretable androbust ranking within the extended TODIM framework. Finally, we present an il-lustrative example to demonstrate the application of this interpretable and robustTODIM approach, accompanied by a comparative analysis to highlight its advan-tages.Keywords:
TODIM; q-rung orthopair fuzzy sets;Robustness analysis; Interpretabil-ity; Prospect theory

1. Introduction

Multiple criteria decision analysis (MCDA) is a frequently encountered process in human activi-ties, involving the selection, ranking, or sorting of alternatives based on multiple and often conflictingcriteria [1, 2]. Traditional MCDA methods can be classified into value-based methods and outranking-
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based methods. The AHP (Analytic Hierarchy Process) and ANP (Analytic Network Process) methodsare examples of the former, while ELECTRE (an acronym in French of elimination and choice translatingreality) methods belong to the latter category. However, TODIM (an acronym in Portuguese of inter-active and multicriteria decision making), which is originally proposed by Gomes & Lima [3, 4], canbe viewed as a distinct category, as it combines elements of the multiattribute utility theory from theAHP method with features of the ELECTRE methods [5]. Another distinguishing feature of the TODIMmethod is its incorporation of psychological behavioral factors of decision-makers (DMs) in situationsinvolving risk and uncertainty, grounded in the principles of prospect theory [6]. To date, the TODIMmethod has been successfully applied across a wide range of industries, including healthcare, realestate, energy, manufacturing, and service sectors.The basic principle of TODIM depends on a value function (or Phi function) that calculates theglobal dominance degree of one alternative over others across all criteria under consideration. A keystep in this process involves calculating the dominance degree of one alternative over another for agiven criterion using the Phi function. These individual dominance degrees are subsequently aggre-gated to determine the global dominance degrees for each alternative, which are then used to rankalternatives. In the original formulation of the TODIM method [3, 4], the Phi function was constructedusing a square root structure, incorporating the weight of the considered criterion within this struc-ture. However, this construction could yield ambiguous or equivocal results in certain scenarios [7].Subsequently, Lee and Shih [8] generalized the original square root structure by introducing a powerfunction, retaining the weight component within the power function. This generalization, however,resulted in a structure that was not fully aligned with the value function of prospect theory. To ad-dress this, Llamazares [9] proposed a revised version of the power Phi function, where the weightcomponent is no longer integrated into the power function. For simplicity, this variant of TODIM isreferred to as power TODIM (PowTODIM) in this paper. Recently, Leoneti and Gomes [10] proposednew variants of TODIM, substituting the power function in PowTODIM with exponential or logarith-mic functions. For simplicity, these derived variants of TODIM are referred to as exponential TODIM(ExpTODIM) and logarithmic TODIM (LogTODIM), respectively. It should be noted that the value func-tions in PowTODIM, ExpTODIM, and LogTODIM all exhibit an S-shaped curve, each adhering to thevalue function defined in prospect theory. A key distinction among these value functions lies in theirbounds: the value function in ExpTODIM is limited to a range between -λ and 1, whereas the valuefunctions in PowTODIM and LogTODIM are unbounded.The accurate characterization of DMs’ value judgments and preferences is fundamental to MCDA.In all the TODIM methods discussed earlier, the evaluation of an alternative for a given criterion isbased on binary logic. As a result, these methods are limited to accepting evaluations in the formof crisp numbers and are ill-equipped to address scenarios where DMs can only provide uncertain orimprecise evaluations. To overcome this limitation, various extensions of the original TODIM methodhave been developed to accommodate evaluations expressed as fuzzy sets [11], intuitionistic fuzzysets (IFSs) [7], Pythagorean fuzzy sets (PFSs) [12], generalized orthopair fuzzy sets (GOFSs) [13], inter-val type-2 fuzzy sets [14], hybrid data [15], and more. Among these evaluation frameworks, GOFSsstand out as a promising tool due to their flexibility in characterizing the degrees of support (member-ship) and opposition (non-membership) of an alternative relative to a given criterion. In GOFSs, thesum of the qth power of the membership degree and the non-membership degree is constrained tobe less than or equal to one. When q equals 1, GOFSs reduce to IFSs; when q equals 2, they simplifyto PFSs. As the parameter q (referred to as the rung) increases, the range of acceptable orthopairs ex-pands, granting DMs greater freedom to articulate their preferences. In this context, GOFSs are oftentermed q-rung orthopair fuzzy sets (q-ROFSs) when fixed at a specific rung q. The notable advantagesof q-ROFSs have attracted considerable interest from numerous researchers, sparking extensive inves-tigations in the field of MCDA [16]. Our paper is motivated by the following factors:
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(1) Few efforts have been made to extend the PowTODIM, ExpTODIM, and LogTODIM methods togeneralized orthopair fuzzy environments. A notable exception is the work by Liu et al. [17], who ex-tended the LogTODIM method to accommodate q-ROFSs. However, their approach relies solely on adistance measure to assess the absolute differences between q-ROFSs, neglecting their relative differ-ences. This oversight can distort decision outcomes, especially in cases involving extreme evaluations.Furthermore, existing studies fail to address high-order uncertainty in q-ROFSs when applying the Pow-TODIM, ExpTODIM, and LogTODIM methods. Although Zhang et al. [18] investigated the uncertaintyinherent in membership and non-membership degrees of q-ROFSs, they did not explicitly incorporatethe psychological behavior of DMs, which is a fundamental aspect of these TODIM methods.(2) The existing approaches inadequately address simultaneous uncertainty in criteria weights,value function coefficients, and the membership and non-membership degrees of q-ROFSs. WhileSMAA-TODIM [19] and SMAA-ExpTODIM [20] have been developed to account for simultaneous un-certainty in criteria measurements, criteria weights, and value function coefficients, they are not de-signed to accommodate q-ROFSs. Additionally, these methods do not provide robustness analysis forthe PowTODIM and LogTODIM variants.(3) The final ranking of alternatives produced by SMAA-TODIM [19] and SMAA-ExpTODIM [20] lackinterpretability for DMs, as these SMAA-based methods fail to provide representative criteria weightsunderlying the final rankings.The aim of this paper is to propose an interpretable robust TODIM approach within the contextof generalized orthopair fuzzy environments, addressing the limitations outlined previously. The orig-inality of our study can be summarized by highlighting the following key aspects:(1) We extend the PowTODIM, ExpTODIM, and LogTODIM methods to generalized orthopair fuzzysettings by introducing a grey relational coefficient-based relative closeness degree, unifying thesethree methods within a single framework.(2) We introduce a set of robustness analysis measures for the extended PowTODIM, ExpTODIM,and LogTODIM methods, rooted in the principles of SMAA (Stochastic Multiobjective AcceptabilityAnalysis). This analysis effectively handles simultaneous uncertainty in criteria weights, value functioncoefficients, and the high-order uncertainty inherent in q-ROFSs.(3) We develop a mathematical programming model to determine representative criteria weightsby leveraging measures derived from the robustness analysis.(4) We propose an approach to generate an interpretable robust ranking from the extended TODIMframework.The paper is structured as follows. Section 2 offers a concise overview of the foundational conceptsunderlying the TODIM methods and q-rung orthopair fuzzy sets. Section 3 details the extension ofthe PowTODIM, ExpTODIM, and LogTODIM methods to generalized orthopair fuzzy environments. InSection 4, we introduce several robustness analysis measures for the extended TODIM method andpropose a method for determining representative criteria weights to facilitate the interpretation ofthe resulting robust ranking. Section 5 provides an illustrative example and a comparison analysis todemonstrate the application and advantages of the proposed approach. Finally, Section 6 concludesthe paper.

2. Preliminaries
In this section, we first review the TODIM methods and then briefly discuss some concepts relatedto q-ROFSs.
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2.1 The TODIM methods

TODIM is a MCDA method inspired by prospect theory [6] and initially developed by Gomes andLima [3, 4] to address ranking and choice problems. Since its introduction, it has evolved into multi-ple variants, most of which are based on three types of Phi functions, as discussed in Leoneti et al.[10]. These developments have given rise to the PowTODIM, ExpTODIM, LogTODIM methods. Theapplication of these methods typically involves the following steps.
Step 1. Normalize the original decision matrixx = [xij]m×n to a standard decision matrix y = [yij]m×nusing a linear technique, where xij represents the measurement of an alternative ai (i ∈ M =

{1, 2, ...,m}) in terms of a criterion gj (j ∈ N = {1, 2, ..., n}).
Step 2. For each i, h ∈ M and j ∈ N , calculate the dominance degree of alternative ai over ah forcriterion gj using Phi function φj(ai, ah):

φj(ai, ah) = wjψj(ai, ah) (1)
where wj is the weight of criterion gj such that wj ≥ 0(j = 1, 2, . . . , n) and ∑n

j=1wj = 1, and
ψj(ai, ah) is a value function. In particular, the value function in the TODIM methods can take thepower, exponential, and logarithmic formulations:

• The power value function

ψpow
j (ai, ah) =


(yij − yhj)

α, if (yij − yhj) > 0

0, if (yij − yhj) = 0

−λ(yhj − yij)
β, if (yij − yhj) < 0

(2)

• The exponential value function

ψexp
j (ai, ah) =


1− 10−ρ(yij−yhj), if (yij − yhj) > 0

0, if (yij − yhj) = 0

−λ(1− 10ρ(yhj−yij)), if (yij − yhj) < 0

(3)

• The logarithmic value function

ψlog
j (ai, ah) =


log(1 + 10ρ(yij − yhj)), if (yij − yhj) > 0

0, if (yij − yhj) = 0

−λ log(1 + 10ρ(yhj − yij)), if (yij − yhj) < 0

(4)

such that the value function coefficients satisfy 0 < α, β ≤ 1, λ > 1, ρ ∈ {1, 2, 3, 4, 5}.
Step 3. For each i, h ∈M , calculate the dominance ratio of alternative ai over ah by Eq. (5):

δi(ai, ah) =
n∑

j=1

φj(ai, ah). (5)
Step 4. For each i ∈M , calculate the global dominance degree of alternative ai based on the sum ofthe dominance ratio and normalize these degrees between 0 and 1 by Eq. (6):

π(ai) =

∑m
h=1 δi(ai, ah)−mini∈M

∑m
h=1 δi(ai, ah)

maxi∈M
∑m

h=1 δi(ai, ah)−mini∈M
∑m

h=1 δi(ai, ah)
(6)

Step 5. Rank the alternatives according to π(ai)(i = 1, 2, . . . ,m) in descending order. A larger valueof π(ai) corresponds to a better alternative.
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2.2 Some concepts on q-ROFSs

In the following, we review the basic concept of the q-ROFS and its associated distance measure.
Definition 1 [21]. Let X be a nonempty fixed set, then a q-ROFS Q on X can be expressed as follows:

Q = {< x, αQ(x), βQ(x) > |x ∈ X}, (7)
where αQ(x) : X → [0, 1] and βQ(x) : X → [0, 1] denote the membership degree and the non-membership degree of x to Q, respectively, which satisfy the following condition for each x ∈ X:
0 ≤ (αQ(x))

q + (βQ(x))
q ≤ 1 (q ≥ 1). The degree of indeterminacy of element x ∈ X is given as

πQ(x) = (1− (αQ(x))
q − (βQ(x))

q)1/q.For convenience, ⟨αỹ(x), βỹ(x)⟩ can be called a q-rung orthopair fuzzy number (q-ROFN) [22],denoted by ỹ = ⟨αỹ, βỹ⟩.
Definition 2 [23]. Let ỹ1 = ⟨α1, β1⟩ and ỹ2 = ⟨α2, β2⟩ be two q-ROFNs, the Minkowski distancebetween ỹ1 and ỹ2 is defined as

dp(ỹ1, ỹ2) =

(
1

2
|α1 − α2|p +

1

2
|β1 − β2|p

)1/p

, (8)
where p ≥ 1. Especially, the Minkowski distance reduces to Hamming distance and Euclidean distancewhen p = 1 and p = 2, respectively.
3. Extended TODIM to accommodateq-rung orthopair fuzzy settings

The TODIM methods traditionally accommodate decision matrix with precise values, neglectingsituations where evaluations of a given alternative across all considered criteria are represented by
q-ROFNs. In this section, we aim to extend the TODIM methods to handle q-rung orthopair fuzzyinformation, which we will refer to as the qROF-ETODIM method throughout the rest of the paper.Consider a MCDM problem that a set ofm alternatives (ai, i ∈ {1, 2, . . . ,m}) are to be evaluatedor ranked in terms of n criteria (gj, j ∈ {1, 2, . . . , n}). Assume that the measurement of alternative aiw.r.t criterion gj is represented by a q-ROFN, denoted as ⟨µij, νij⟩. The orthopair ⟨µij, νij⟩ captures thedegrees of membership and non-membership, respectively, indicating the extent to which alternative
ai supports and opposes criterion gj . The considered criteria are assumed to be independent, and theweights for them are denoted by w = [wj]1×n, such thatwj ≥ 0 and ∑n

j=1wj = 1. The specific stepsof the qROF-ETODIM method are presented as follows.
Step 1. Normalize the q-rung orthopair fuzzy decision matrix x = [xij]m×n = (⟨µij, νij⟩)m×n to matrix

r = (r̃ij)m×n = ⟨µ̄ij, ν̄ij⟩m×n by transforming cost-type criteria into benefit-type criteria, suchthat ⟨µ̄ij, ν̄ij⟩ = ⟨µij, νij⟩ for benefit criteria and ⟨µ̄ij, ν̄ij⟩ = ⟨νij, µij⟩ for cost criteria.
Step 2. Transform the normalized q-rung orthopair fuzzy decision matrix into a grey relational coefficient-based relative closeness degree matrix.For a normalized q-rung orthopair fuzzy decision matrix r = (r̃ij)m×n with r̃ij = ⟨µ̄ij, ν̄ij⟩, let
r+i = ⟨1, 0⟩ and r−i = ⟨0, 1⟩ be the absolute positive ideal point (APIS) and absolute negative idealpoint (ANIS) under criterion gj , respectively. Following the principle of grey relational analysis, wedefine the grey relational coefficient (GRC) between the alternative ai and the APIS in terms of criterion
gj as follows:

o+(r̃ij) =
mini minj d

p(r̃ij, r
+
j ) + χmaxi maxj d

p(r̃ij, r
+
j )

dp(r̃ij, r
+
j ) + χmaximaxj dp(r̃ij, r

+
j )

, (9)
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and the GRC between the alternative ai and the ANIS in terms of criterion gj as follows:

o−(r̃ij) =
mini minj d

p(r̃ij, r
−
j ) + χmaxi maxj d

p(r̃ij, r
−
j )

dp(r̃ij, r
−
j ) + χmaximaxj dp(r̃ij, r

−
j )

, (10)
where χ in Eqs. (9) and (10) is a distinguishing coefficient such that 0 < χ ≤ 1, and the distancebetween different q-ROFNs can be measured using Eq. (8).The GRC o+(r̃ij) (j = 1, 2, . . . , n) represents the degree of correlation between the alternative aiand the APIS. A higher value of o+(r̃ij) (j = 1, 2, . . . , n) indicates a stronger correlation with APIS andsuggests that the alternative is more favorable. On the other hand, the GRC o−(r̃ij) (j = 1, 2, . . . , n)represents the degree of correlation between the alternative ai and the ANIS. A higher value of o−(r̃ij)(j = 1, 2, . . . , n) indicates a stronger correlation with ANIS and suggests that the alternative is lessfavorable.For a given normalized decision matrix (r̃ij)m×n, we can formulate two GRC matrices, ∆+ =
[o+(r̃ij)]m×n and ∆− = [o−(r̃ij)]m×n, based on Eqs. (9) and (10), respectively. To comprehensivelyevaluate the performance of the considered alternative under a given criterion, inspired by the TOPSISmethod, the individual relative closeness degree η(r̃ij) in terms of GRCs can be defined as:

η(r̃ij) =
o+(r̃ij)

o+(r̃ij) + o−(r̃ij)
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (11)

where the higher the value of η(r̃ij) (i = 1, 2, . . . ,m, j = 1, 2, . . . , n) indicates a better performanceof the alternative.
Step 3. Choose a value function formulation from the following three types and determine thecoefficients of the selected value function.

• The power value function

ψpow
j (ai, ah) =


(η(r̃ij)− η(r̃hj))

α, if η(r̃ij) > η(r̃hj)

0, if η(r̃ij) = η(r̃hj)

−λ(η(r̃hj)− η(r̃ij))
β, if η(r̃ij) < η(r̃hj)

(12)

• The exponential value function

ψexp
j (ai, ah) =


1− 10−ρ(η(r̃ij)−η(r̃hj)), if η(r̃ij) > η(r̃hj)

0, if η(r̃ij) = η(r̃hj)

−λ(1− 10−ρ(η(r̃hj)−η(r̃ij))), if η(r̃ij) < η(r̃hj)

(13)

• The logarithmic value function

ψlog
j (ai, ah) =


log(1 + 10ρ(η(r̃ij)− η(r̃hj))), if η(r̃ij) > η(r̃hj)

0, if η(r̃ij) = η(r̃hj)

−λ log(1 + 10ρ(η(r̃hj)− η(r̃ij))), if η(r̃ij) < η(r̃hj)

(14)

Note that in the extended TODIM method, we define the parameter ρ to take values within thereal number domain [1, 5] to accommodate group decision-making scenarios. In such contexts, eachDM can express his/her individual preference for the value of ρ, and the collective opinion for thevalue of ρ can be any real number between 1 and 5.
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Step 4. For each i, h ∈M , calculate the dominance ratio of alternative ai over ah by Eq. (15):

δi(ai, ah) =


∑n

j=1wjψ
pow
j (ai, ah), if power value function is considered∑n

j=1wjψ
exp
j (ai, ah), if exponential value function is considered∑n

j=1wjψ
log
j (ai, ah), if logarithmic value function is considered

(15)

Step 5. For each i ∈M , calculate the performance of alternative ai based on the sum of thedominance ratio by Eq. (16):
π(ai) =

m∑
h=1

δi(ai, ah). (16)
Alternatively, normalize the values of π(ai) (i = 1, 2, . . . ,m) between 0 and 1 by Eq. (17):

π̄(ai) =
π(ai)−mini∈M π(ai)

maxi∈M π(ai)−mini∈M π(ai)
. (17)

Step 6. Rank the alternatives according to π(ai) or π̄(ai) (i = 1, 2, . . . ,m) in descending order. Alarger value of π(ai) or π̄(ai) corresponds to a better alternative.The implementation of the qROF-ETODIM method involves several parameters, such as criteriaweights and coefficients of the chosen value function. If the DMs can reach a consensus on theseparameters and obtain precise values, the ranking of alternatives can be directly determined usingthe outlined steps. However, if the group can only provide partial preference information or cannotprovide any preference information—and even the membership and non-membership preferences ofthe alternatives cannot be accurately determined—robustness analysis for the qROF-ETODIM methodbecomes necessary.
4. Interpretable robust ranking for the extended TODIM

The SMAA framework provides a robust approach for addressing uncertainty in model parameters.For instance, SMAA-TODIM and SMAA-ExpTODIM have been developed to manage uncertainty in thetraditional TODIM and ExpTODIM methods, respectively. However, these approaches are not well-suited for handling q-rung orthopair fuzzy information. Furthermore, the DMs often struggle to inter-pret the robust rankings produced by SMAA-TODIM and SMAA-ExpTODIM. In this section, we applySMAA principles to evaluate the robustness of ranking results derived from the qROF-ETODIM methodwhen confronted with uncertain, imprecise, or incomplete information. Additionally, we propose amodel to identify representative criteria weights based on robustness analysis measures, thereby en-hancing the understanding and interpretation of the resulting robust ranking.
4.1 Robustness analysis for the extended TODIM

The qROF-ETODIM method can be regarded as a real-valued function, πi = T(i,x,w, s), which as-sign a scoreπi for alternative ai by inputting a decision matrixx and some preference parameters, suchas the criteria weighsw, and the other parameters, denoted by a vector s, such that s = [α, β, λ, χ, p]if the power value function is considered, and s = [ρ, λ, χ, p] if the exponential or logarithmic valuefunction is considered. When applying the qROF-ETODIM method, the uncertainty in measuring theextent to which an alternative supports or opposes a given criterion, that is, the membership degreeand non-membership degree, can be respectively modeled by stochastic variables, ξµij , and ξνij , in fea-sible space X ⊆ [0, 1]m×n, whose joint probability density function (pdf) can be denoted by fX(ξµ)
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and fX(ξν), respectively. Therefore, the pdf for criteria measurements can be formulated as a prod-uct fΓ(ξ) = fX(ξ

µ)fX(ξ
ν), where Γ represents a feasible criterion measurement space such that

Γ = {ξ = ⟨ξµ, ξν⟩ : ξµ, ξν ∈ X}. In cases where the DMs cannot provide any preference informa-tion on the preference parameters under consideration, the uncertainty in these parameters w, s canbe represented as independent variables within the spaces W , and S, respectively, such that
W =

{
w ∈ Rn : wj > 0, j = 1, 2, . . . , n,

n∑
j=1

wj = 1

}
,

S =
{
s ∈ R5 : 0 < α ≤ 1, 0 < β ≤ 1, λ ≥ 1, 0 < χ ≤ 1, p ≥ 1

}
if the power value function is considered, or

S =
{
s ∈ R4 : 1 ≤ ρ ≤ 5, λ ≥ 1, 0 < χ ≤ 1, p ≥ 1

}
if the exponential or logarithmic value function is considered. Let the joint pdf of w, and s be denotedby fW (w) and fS(s), respectively. If the DMs can provide some preference on w, and s, this infor-mation can be translated into corresponding constraints and incorporated into the respective feasiblespaces, resulting in restricted feasible spaces. To avoid heavy notation, we use the same symbols forthese restricted spaces in the rest of the paper.Based on the principles of SMAA, we define a ranking function for the qROF-ETODIM method asfollows:

rank(i,x,w, s) = 1 +
∑
h̸=i

κ(T(h,x,w, s) > T(i,x,w, s)), (18)
where κ(true) = 1 and κ(false) = 0.The SMAA-qROF-ETODIM method is therefore based on the definition of a set of measures, whichis described as follows:

• The rank acceptability index (RAI), which represents the probability of an alternative ai achievingthe rth position in the final ranking, is defined by
bri =

∫
Γ

fΓ(ξ)

∫
(w,s)∈W×S:rank(i,x,w,s)=r

fW (w)fS(s)dwdsdξ. (19)

• The strict pairwise winning index (SPWI), which represents the probability that alternative ai isstrictly preferred to ak, is defined by
pSik =

∫
(w,s)∈W×S:rank(i,x,w,s)<rank(k,x,w,s)

fW (w)fS(s)

∫
Γ

fΓ(ξ)dξdwds. (20)

• The weak pairwise winning index (WPWI), which represents the probability that alternative aiis better than or indifferent to ak, is defined by
pWik = pSik +

1

2

∫
(w,s)∈W×S:rank(i,x,w,s)=rank(k,x,w,s)

fW (w)fS(s)

∫
Γ

fΓ(ξ)dξdwds. (21)
It is evident that the WPWI satisfies the condition pWik + pWki = 1.
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• The central weight vector (CWV), which represents a vector of criteria weights that reflect thepreferences of a typical DM who ranks alternative ai in the first place, is defined by

wc
i =

1

b1i

∫
Γ

fΓ(ξ)

∫
(w,s)∈W×S:rank(i,x,w,s)=r

fW (w)fS(s)wdwdsdξ. (22)
• The central coefficient vector (CCV), which represents a vector of coefficient that reflect thepreferences of a typical DM who ranks alternative ai in the first place, is defined by

sci =
1

b1i

∫
Γ

fΓ(ξ)

∫
(w,s)∈Q×W×S:rank(i,x,w,s)=r

fW (w)fS(s)sdwdsdξ. (23)
The calculation of these robustness measures can be estimated using Monte Carlo simulation,as demonstrated in the work of Zhang et al. [18]. It is important to note that multiple rounds ofrobustness analysis can be conducted if the DMs are not satisfied with the calculated results of thesemeasures. In such cases, the DMs can update their preference information regarding the consideredparameters to refine the analysis.

4.2 Determination of representative criteria weights from pairwise winning index

The CWV as defined in Section 4.1 can provide value information on representative criteria weightsfor an alternative achieving the first position, rather than for the resulting robust ranking. To facilitatethe interpretation of the final ranking, this section introduces a method for determining representativecriteria weights based on WPWI. Therefore, it is reasonable to assume that the DMs have, throughmultiple rounds of robustness analysis, identified satisfactory values for all parameters except thecriteria weights. However, in certain cases, uncertainty in x and s may still persist. To address this, wecan use their expected values instead. Thus, we propose the following model for a general situationin the spirit of Arcidiacono et al. [24]:
ϑ∗ = maxϑ

s.t.

{
T (i, E(x),w, E(s))− T (h,E(x),w, E(s)) ≥ ϑ(pWih − 0.5),∀(i, h) ∈M ×M : pWih ≥ 0.5, i ̸= h

w ∈ W

(24)
whereE(xij) =

〈∫
ξµijfX(ξ

µ
ij)dξ

µ
ij,

∫
ξνijfX(ξ

ν
ij)dξ

ν
ij

〉,E(s) = ∫
sfS(s)ds, and the values of pWih (i, h =

1, 2, . . . ,m) are calculated under the settings of E(xij) and E(s).The solutions of the model may fall into several distinct cases. (1) When ϑ∗ > 0, it indicatesthe existence of at least one set of weights that makes ai ≻ ah and pWih > 0.5 equivalent for anypair of alternatives. (2) Conversely, when ϑ∗ ≤ 0, it suggests the presence of at least one pair ofalternatives where ai is inferior to ah despite pWih > 0.5. In this scenario, the model can be understoodas determining the criteria weights that minimize the deviation between the ranking of alternativespredicted by the extended TODIM method and that predicted by the WPWI. (3) If the model provesinfeasible, it signals inconsistency in the preference information provided by the DMs. In such cases,the conflicting constraints can be identified using the approach proposed by Mousseau et al. [25],after which the solution reverts to either case (1) or (2). Thus, regardless of whether ϑ∗ > 0 or ϑ∗ ≤ 0,it is always possible to derive a set of representative criteria weights. However, this set may not beunique. To address this, we denote the constraints in model (24) by Ωϑ and introduce an additionalconstraint ϑ = ϑ∗ to Ωϑ, forming a new constraint space Ωϑ∗ . Ultimately, a unique set of criteriaweights can be elicited by calculating the centroid of this new feasible space through Monte Carlosimulation.
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4.3 Approach for deriving an interpretable robust ranking from the extended TODIM

In this section, we present an approach for deriving an interpretable robust ranking from the qROF-ETODIM method, building on the work outlined in Sections 4.1 and 4.2. The detailed steps are asfollows:
Step 0. Identify an MCDA problem and collect evaluations of alternatives based on the criteria underconsideration, utilizing the tool of q-ROFSs.
Step 1. Select an appropriate value function type from the available options—exponential value func-tion, logarithmic value function, or power value function—and proceed to normalize the q-rung or-thopair fuzzy decision matrix according to Section 3.
Step 2. The DMs are invited to provide (or update) preference information on certain parameters,such as criteria weights and value function coefficients. If these parameters are precisely determined,proceed to Step 5. Otherwise, continue to the next step.
Step 3. Generate samples from the feasible spaces of the considered parameters using the hit-and-runalgorithm [26]. Based on these samples, estimate the robustness measures developed in Section 4.1.If the DMs are satisfied with the calculated results, proceed to the next step; otherwise, return to Step2.
Step 4. Determine representative criteria weights by solving Model (24) and calculating the associatedcentroid of space Ωϑ∗ . If the DMs are satisfied, proceed to the next step; otherwise, return to Step 2.
Step 5. Implement the extended TODIM method developed in Section 3 to derive a representativerobust ranking of alternatives. If necessary, provide an interpretation of the results.
5. An illustrative example and comparative analysis

5.1 An illustrative example

To illustrate the application of the proposed method, an example is considered, involving the evalu-ation of five emergency response plans developed for COVID-19 based on four criteria: rescue capacity(g1), response capacity (g2), response cost (g3), and potential impact of public opinion (g4). The ex-ample is adapted from Zhang et al. [18]. Table 1 presents the normalized evaluations of alternativesacross these four criteria.
Table 1

The normalized evaluations of alternatives under a given set of criteria
g1 g2

a1 ⟨[0.4, 0.5], [0.3, 0.4]⟩ ⟨[0.7, 0.8], [0.5, 0.6]⟩
a2 ⟨[0.3, 0.4], [0.7, 0.8]⟩ ⟨[0.4, 0.5], [0.4, 0.5]⟩
a3 ⟨[0.2, 0.3], [0.5, 0.6]⟩ ⟨[0.5, 0.6], [0.4, 0.5]⟩
a4 ⟨[0.7, 0.8], [0.2, 0.3]⟩ ⟨[0.4, 0.5], [0.0, 0.1]⟩
a5 ⟨[0.4, 0.5], [0.5, 0.6]⟩ ⟨[0.5, 0.6], [0.0, 0.1]⟩

g3 g4

a1 ⟨(0.5, 0.6, 0.7, 0.8), (0.2, 0.3, 0.4, 0.5)⟩ ⟨(0.4, 0.5, 0.6, 0.7), (0.0, 0.1, 0.2, 0.3)⟩
a2 ⟨(0.4, 0.5, 0.6, 0.7), (0.0, 0.1, 0.2, 0.3)⟩ ⟨(0.5, 0.6, 0.7, 0.8), (0.6, 0.7, 0.8, 0.9)⟩
a3 ⟨(0.2, 0.3, 0.3, 0.4), (0.3, 0.4, 0.4, 0.5)⟩ ⟨(0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.7, 0.8)⟩
a4 ⟨(0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7)⟩ ⟨(0.4, 0.5, 0.6, 0.7), (0.1, 0.2, 0.3, 0.4)⟩
a5 ⟨(0.6, 0.7, 0.8, 0.9), (0.2, 0.3, 0.4, 0.5)⟩ ⟨(0.3, 0.4, 0.5, 0.6), (0.5, 0.6, 0.7, 0.8)⟩

The DMs unanimously agreed to choose the exponential value function for the problem at hand,and their preferences for some parameters are 1 ≤ p ≤ 3, 0.4 ≤ χ ≤ 0.6, 1 ≤ ρ ≤ 5, 2 ≤ λ ≤ 2.5.
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At the initial stage of the analysis, the DMs provide no information on the weights of criteria. Case1 is thus formulated based on the given information. Then we implemented the robustness analysisdeveloped in Section 4.1. Tables 2-4 show the calculated results.

Table 2
The matrix of RAIs (in %) (Case 1)

b1i b2i b3i b4i b5i

a1 40.98 44.63 14.36 0.03 0
a2 0.84 4.9 14.7 64.38 15.18
a3 0 0 0 15.62 84.38
a4 43.35 31.13 13.32 11.81 0.39
a5 14.83 19.34 57.62 8.16 0.05

Table 3
The matrix of WPWIs (in %) (Case 1)
a1 a2 a3 a4 a5

a1 50 98.28 100 50.53 77.75
a2 1.72 50 84.82 13.24 12.06
a3 0 15.18 50 0.39 0.05
a4 49.47 86.76 99.61 50 69.4
a5 22.25 87.94 99.95 30.6 50

Table 4
The matrix of CWVs and CCVs (Case 1)

w1 w2 w3 w4 p χ ρ λ

a1 0.1748 0.1614 0.3454 0.3185 2.2204 3.0132 0.499 2.0114
a2 0.0643 0.0743 0.7427 0.1187 2.2127 3.2209 0.5041 2.0114
a3 NA NA NA NA NA NA NA NA
a4 0.3712 0.2697 0.1162 0.2429 2.2239 2.9509 0.5011 1.9801
a5 0.1178 0.4525 0.3443 0.0854 2.2189 3.1384 0.4983 1.9925

However, the DMs are not satisfied with the results in Case. They suggest to conduct a new roundof analysis by providing additional preferences on criteria weights, that is, w1 ≥ 2w2, w4 ≥ w3, 0.1 ≤
w1 ≤ 0.4, w2 ≥ 0.05, 0.05 ≤ w3 ≤ 0.15, w4 ≥ 0.05, with the preferences for other parametersremain the same as in Case 1. Building upon this, Case 2 is thus formulated. Tables 5-6 shows someresults.

Table 5
The matrix of RAIs (in %) (Case 2)
b1i b2i b3i b4i b5i

a1 34.12 65.88 0 0 0
a2 0 0 15.41 83.8 0.79
a3 0 0 0 0.86 99.14
a4 65.88 34.12 0 0 0
a5 0 0 84.59 15.34 0.07
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Table 6

The matrix of WPWIs (in %) (Case 2)
a1 a2 a3 a4 a5

a1 50 100 100 34.12 100
a2 0 50 99.21 0 15.41
a3 0 0.79 50 0 0.07
a4 65.88 100 100 50 100
a5 0 84.59 99.93 0 50

Based on Tables 5 and 6, we can derive a robust ranking of alternatives, that is, a4 ≻ a1 ≻ a5 ≻
a2 ≻ a3. However, the DMs need to explain the results to stakeholders. Thus, we formulated thefollowing model to determine representative criteria weights:
ϑ∗ = maxϑ

s.t.



T (i, E(x),w, E(s))− T (h,E(x),w, E(s)) ≥ ϑ(pWih − 0.5),∀(i, h) ∈M ×M : pWih ≥ 0.5, i ̸= h

w1 ≥ 2w2, w4 ≥ w3

0.1 ≤ w1 ≤ 0.4, 0.05 ≤ w3 ≤ 0.15

w2 ≥ 0.05, w4 ≥ 0.05∑4
j=1wj = 1

(25)
By solving the model, we have ϑ∗ = 2.4848. Subsequently, by calculating the centroid of the sapce

Ωϑ∗ , we get the unique and most representative criteria weightsw = (0.3435, 0.1253, 0.0500, 0.4812).Then we implemented the extended TODIM method, and get that π̄(a1) = 0.8981, π̄(a2) = 0.2156,
π̄(a3) = 0, π̄(a4) = 1, and π̄(a5) = 0.4214. That is, the interpretable robust ranking of the alternativesunder consideration is a4 ≻ a1 ≻ a5 ≻ a2 ≻ a3.
5.2 Comparative analysis

To the best of our knowledge, two types of robustness analysis for TODIM methods have beendeveloped in the literature, namely SMAA-TODIM [19] and SMAA-ExpTODIM [20]. However, neitherof these methods is capable of handling generalized orthopair fuzzy information. Additionally, whileboth methods can derive a robust ranking, they lack the ability to provide an explanation for theresulting ranking. The method proposed in this paper addresses these gaps. More detailed analysiscan be found in Table 7.
Table 7

Comparison analysis with other robust ranking methods
The type ofvalue function

Can the method handlegeneralized orthopair fuzzyinformation?
Is the rankingrobust? Is the rankinginterpretable?

SMAA-TODIM [19] Power value function No Yes NoSMAA-ExpTODIM [20] Exponential value function No Yes NoThe proposed approach Power/exponential/logarithmic Yes Yes Yes
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6. Conclusions
This study introduces an interpretable robust TODIM approach within the context of generalizedorthopair fuzzy settings for the first time. In the proposed approach, a grey relational coefficient-basedrelative closeness degree is introduced to extend the PowTODIM, ExpTODIM, and LogTODIM meth-ods, adapting them to generalized orthopair fuzzy settings. Additionally, a set of robustness analysismeasures is developed for the extended TODIM method, accounting for simultaneous uncertainty incriteria weights, value function coefficients, and the membership and non-membership degrees ofgeneralized orthopair fuzzy sets. This enhancement enables the extended TODIM method to gener-ate robust rankings in the presence of high-order uncertainty. Finally, a technique for determiningrepresentative criteria weights is developed to enhance the interpretability of the robust recommen-dations.In this study, the criteria are assumed to be independent, an assumption that could be relaxedin future research to incorporate positive and negative interactions between them. In addition, ex-tending the application of the proposed interpretable robust TODIM approach to recommendationsystems with online reviews presents an intriguing opportunity, given the flexible representation ofonline reviews through generalized orthopair fuzzy sets.
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