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1. Introduction

Multi-Attribute Decision-Making (MADM) is a mathematical tool applied across various
scientific domains. In the literature, it is also referred to as Multi-Attribute Decision Analysis
(MADA). Generally, MADM encompasses a set of mathematical methods designed for solving
discrete optimization problems. More broadly, along with Multi-Objective Decision Making
(MODM), it falls under the category of Multi-Criteria Decision-Making (MCDM) methods and, as
such, can be classified within the domain of Operational Research (OR).

The fundamental characteristic of MADM methods is that a predefined set of alternatives is
evaluated based on a predefined set of attributes/criteria. Therefore, they solve discrete
optimization problems.

A large number of MADM methods have been developed and are widely used in the relevant
literature. Likewise, different authors have proposed various classifications of these methods. One
of the earliest and most fundamental classifications of MADM methods was presented in the
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publication by [1]. The author categorizes all MADM methods into three main groups: (1) methods
for determining relevant criteria and alternatives, (2) methods for establishing the importance
(weights) of criteria, and (3) methods for ranking alternatives.

Methods for determining criterion weights are frequently used in the literature. Although some
of them can also be used for ranking alternatives, their primary purpose is to assign weights to
criteria. Some of the most well-known methods include Analytic Hierarchy Process (AHP) [2,3],
Analytic Network Process (ANP) [4], CRiteria Importance Through Intercriteria Correlation (CRITIC)
[5], Decision-Making Trial and Evaluation Laboratory (DEMATEL) (see [6,7]), and Best-Worst
Method (BWM) [8], as well as some newer methods such as Level Based Weight Assessment
(LBWA) [9], Stochastic Identification of Weights (SITW) [10], Defining Interrelationships between
Ranked Criteria (DIBR) [11], DIBR 11 [12,13], and others.

The most commonly used method from this group is AHP. It has been applied for determining
criterion weights in various types of problems, such as supplier selection [14], site selection [15],
and production planning problems [16], among others.

The largest group of methods consists of those used for ranking alternatives. This group
includes methods based on different mathematical principles. Some of the most well-known
methods are Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [17], Multi-
Criteria Optimization and Compromise Solution (serb. VISekriterijumska Optimizacija i
Kompromisno ReSenje — VIKOR) [18], Multi-Attributive Border Approximation area Comparison
(MABAC) [19], Measurement Alternatives and Ranking according to the COmpromise Solution
(MARCOS) [20], Evaluation based on Distance from Average Solution (EDAS) [21], Additive Ratio
Assessment (ARAS) [22], (Multi-Attributive Realldeal Comparative Analysis (MARICA) [23], RAnking
based on Distance And Range (RADAR) [24,25], and others.

These methods have a broad and diverse range of applications. For instance, they have been
utilized for supplier selection [14,20], in the field of Information Technology [26], the oil and gas
industry [27], wastewater treatment technologies [28], improving manufacturing process reliability
[29], risk assessment [30], material selection [31], and engineering management [12], among
others.

The selection of an appropriate MADM method depends on numerous factors related to the
nature of the problem itself. It cannot be stated that one method is always superior to another;
rather, certain methods are more suitable for specific types of problems.

The aim of this paper is to provide fundamental mathematical explanations of the RADAR
method. The method was first introduced in [24], where it was applied to prioritize failure modes in
the automotive industry. Subsequently, it was utilized for industrial equipment selection [25],
where a new variant of the method (RADAR Il) was also presented. Additionally, through the
application of fuzzy set theory, the method has been extended and integrated into the Process
Failure Mode and Effect Analysis (PFMEA) framework in [32].

The key difference between RADAR and RADAR Il lies in the normalization process, specifically
in determining the maximum and minimum proportion matrices, which may later impact the
ranking of alternatives. The objective is to illustrate these differences through numerical examples.
Both RADAR and RADAR Il are well-suited for reliability-related problems, as they identify the most
stable solution across all considered criteria. Furthermore, the mathematical foundation of the
method is designed to mitigate the influence of alternatives that perform exceptionally well on less
important criteria while effectively highlighting the quality of alternatives that perform well on
critical criteria.
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The fundamental concept and characteristics of the method are outlined in [24]. In this study, a
mathematical proof is provided, and the operational principles of the method are explained. In
addition, through numerical examples, the key features of RADAR and RADAR Il are demonstrated.

Following the introductory chapter, Chapters 2 to 5 provide a mathematical explanation of the
method’s functioning. Chapter 6 presents numerical examples along with a discussion of the
obtained results. Finally, Chapter 7 summarizes the key findings of this research.

2. Algorithm for applying the RADAR method

The fundamental steps of the RADAR method were first introduced in the study by [24], while
the modification of the method and the RADAR Il variant were first published in Komatina [25]. To
ensure a clearer explanation of the method throughout the rest of the paper, this chapter presents
the fundamental steps of both the RADAR and RADAR |l methods.

Let us consider a set of alternatives {1,...,i,...1}, evaluated according to a set of criteria
{1, ...,j,...J}. The steps of the RADAR method can then be presented as follows [24,25]:

Step 1. Formation of the decision matrix:

[My],,, (1)
Step 2. The maximum proportion matrix, a:
lay],,,, (2)
For the benefit type of criteria (RADAR):
miaxMij

(3)

a.. =
Y maxM;; M::
A ij

For the cost type of criteria (RADAR):
M;:
m_inll\]l--

L (4)

a;: =
Y maxM; ; M::
i Y + t
Mij miinMij

For the benefit type of criteria (RADAR II):
miaxMi]-—Mi]-
<(miaxMij—Mij)+(Mij—miinMij)>

For the cost type of criteria (RADAR II)
Mij—miinMij

(5)

aij =

O e

Step 3. The minimum proportion matrix, 3:

18], ; (7)
For the benefit type of criteria (RADAR):
M;;
mllnI(/Il]

(8)

Bij =
] miaXMij N Mj

For the cost type of criteria (RADAR):
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mijaXMij

M;:

- (9)

ﬁij =
miaxMij . Mij
Mij miinMij

For the benefit type of criteria (RADAR II):

M;i—minM;;
ij i ij

Bij = (10)
((miaxMij—Mij)+(MU—miinMl-j)>
For the cost type of criteria (RADAR II)
maxMij—Mij
Bij = : (11)

<(miaxMij—Mij)+(Mij—miin Mij))

From the given information, the following rules can be concluded:

e q;; for a benefit-type criteria is calculated in the same way as f3;; for a cost-type criteria. The
reverse also holds.

e Forevery considered i,i = 1, ...] evaluated accordingto any j = 1, ..., J, the following holds:

a;j +Bij =1

Step 4. The empty range matrix:

[Eij],xj (12)
where

Eij = |ai; — Bijl (13)
Step 5. The relative relationship matrix:

L (14)
where:

aij

RRy; = ﬂij+]Eij (15)
Step 6. The weighted relative relationship matrix:

[WRRy],, (16)
Where:

WRR;; = RR;j - w;j (17)
Step 7. The aggregated ranking index, RI;:

RI; = m (18)

2§=1WRRL-
The values of RI; need to be sorted in a non-increasing order. The best alternative is the one
with the highest RI; value, which is always 1. The lowest-ranked alternative is the one with the
smallest value of this coefficient.

3. Normalization of values: o and 8 matrices
3.1 Range of a and 6 values

The normalization procedure in the RADAR method is defined in a dual manner. Instead of a
single value, two normalized values are obtained: the distance from the best solution, a, and the
distance from the worst solution, £.

In the basic RADAR method, the elements of the maximum proportion matrix [aij]lx] are

determined according to Eq. (3) and Eq. (4).

The value a;; is within the interval [0, 1]. A value closer to O indicates that alternative i,i =
1, ..., I concerning criterionj,j = 1, ..., ] is closer to the best available value. A value of 1 indicates
the opposite.
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Let us consider that:
m,axMij
¥ = X (19)
Mij
M..
=— (20)
milan-]-
It follows that the values of a;; are:

For the benefit type of criteria:
X
aij = 4oy (21)
For the cost type of criteria:
Y
aij =55 (22)
Theorem 1. Monotonicity of a;; with respect to X for a benefit-type criterion.
Proof: In the case where X increases while the value of Y remains constant, the value of a;;
increases. Let us consider the function in Eq. (21).
In that case, the first derivative of the function a;; with respect to X according to the quotient

rule, can be written as follows:

day _ 9 x__ (XHDF0-Xg5(X+Y) )3

X 90X X+Y (X+Y)2 (23)
Since Y is constant, the following holds:

d

—X)=1

7 X)

d X+ =1

dx B
From this, it follows that:

da;;  (X+Y)1-X1 _ Y

X~ (X+Y)2  (X+Y)? (24)
As X > 0 andY > 0 always hold, it follows that:

X+Y)2>0
Therefore:

6aij

—>0

0X

In this way, it is proven that a;; increases as the value of X increases. In other words, the
greater the difference between max M;; for a given criterion and the considered alternative M;;,
l
the higher the value of a;;, meaning that the alternative is further from the best solution.

Theorem 2. Monotonicity of a;; with respect to Y for benefit-type criteria.

Proof: In the case where Y increases while the value of X remains constant, the value of a;;
decreases.

Let us consider the function in Eq. (21). In this case, the first derivative of the function a;; with
respect to Y can be expressed using the quotient rule as follows:
day _ 9 X _ (X+N)ZO0-X-(X+Y)
ay Y X+Y (X+1)2

Since X is constant, the following holds:

d

(25)

d
— X+ =1

From this, it follows that:
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da;j  (X+Y)-0-X-1 -X

a_yj - (X+Y)2 - (X+Y)2 (26)
Since X > 0 and Y > 0 always hold, it follows that:

X+Y)2>0
Therefore:

aaij —X

v ~x+re 0

In this way, it is proven that a;; decreases as the value of Y increases. In other words, the
greater the difference between M;; and the worst alternative according to a given criterion,
min M;;, the lower the value of a;;, meaning that the alternative is closer to the best solution.

l

Both of these theorems also hold for cost-type criteria. However, a;; for cost-type criteria is

calculated in the same way as f3;; for benefit-type criteria. The reverse also applies.

Example. These theorems can also be tested on a simple numerical example. Let us consider an
initial value of X = 10 and Y = 5. The criterion in question is of the benefit type. In this case:

a= 105+5 = 0.667
ﬂ=10+5=0.333
If wlesconsider that the value of Y remains constant while X increases to 15, we obtain:
a= 155+ = 0.75
F=1g3570%

In this way, Theorem 1 is also proven through an example, where an increase in the value of X
leads to an increase in «, provided that Y remains constant. In other words, the alternative is
worse, i.e., it is further from the best alternative. The opposite also holds: if the value of X
decreases, a also decreases, assuming a constant Y.

If X remains constant (initially 10) and Y increases to 20, then we obtain:

a = 0.333

~ 10+ 20

B=To320 " 0067

In this way, Theorem 2 is also proven by example. When the value of Y increases while X
remains constant, the value of a decreases. The opposite also holds.

3.2 Interdependence of o and 6 values
Theorem 3. Mathematical proof that « + f = 1.
Proof: The sum a + [ can be expressed as follows:

X+Y  X+Y
Since both a and £ have the same denominators, we can simply add the numerators:
X+Y
a+ ,8 = X_+Y (28)
From the given expression, it follows that:
a+pf =1

In all situations from Example, the stated rule holds. Thus, it can be said that this theorem has
also been tested on a numerical example.
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The difference between the basic RADAR method and the RADAR Il method lies only in the way
a and f are determined. Instead of using a ratio, the difference between the maximum and the
considered value, as well as the difference between the considered value and the minimum, is
taken, respectively. Although the mathematical operation has changed, the dependency of the
variables remains the same and does not affect their relationship.

Therefore, in the RADAR Il method, @ and 8 are determined according to Eq. (5) and Eq. (6), and
also Eq. (10) and Eq. (11), respectively.

The fundamental difference between these two approaches is that the RADAR Il method allows
a and [ to take a value of 1. In the basic RADAR method, this is not possible because they are
always:
X+Y>X V X+Y>Y

In this case, the numerator and the denominator are never equal, so the values of a and 8
cannot be 1. Likewise, the numerator cannot be 0 when the denominator is not 0.

In the RADAR Il method, the following rules apply (for the benefit-type criterion):

o IfM;; = max M;j, then a;; = 0. This occurs when the considered value is simultaneously the

maximum value.

° IfMU =miian-j,
minimum value.

For B;; the opposite holds. Additionally, @ and 8 are inverse for the cost-type criteria.

From the above, it follows that for both the RADAR and RADAR |l methods:

a=1-p N f[f=1-«a

The above holds for both benefit-type and cost-type criteria.

When comparing the approaches used in the RADAR and RADAR Il methods, the following

conclusions can be drawn:

e The RADAR method allows for finer adjustment of the values of @ and S, which can later
influence the final ranking of an alternative. In the RADAR method, these values also depend
on the range of values within the considered criterion.

e RADAR Il more clearly highlights the advantages and disadvantages of an alternative
concerning a given criterion, respectively. This means that this approach is less flexible and
tends to favour better alternatives while giving weaker alternatives fewer chances to
achieve a higher overall ranking.

Both approaches have certain advantages and disadvantages. However, the choice of method

largely depends on the type of problem being considered, as explained in this paper.

then a;; = 1. This occurs when the considered value is simultaneously the

4. The Empty Range and Relative Relationship matrix

Through steps 4 and 5 of the RADAR (and RADAR Il) method application algorithm, the Empty
Range and Relative Relationship Matrix are calculated. These two matrices are interconnected,
which is why they are explained together.

The values of the Empty range matrix, [El-j] , are calculated using the Eq. (13).

Ix]J
Theorem 4. Mathematical proof that the values of E;; are within the interval [0, 1].
Proof: Since it has been proven that the values of a;; and f;; lie within the interval [0, 1], their
sum is always 1, and their difference a;; — f;; is always within the interval [-1, 1]. The absolute

value of this difference is therefore within the interval [0, 1]. Consequently, it follows that E;; €
[0,1].
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The values of the Relative Relationship Matrix, [RRij]IX]' are calculated using the Eq. (15).

Theorem 5. Mathematical proof that the values of RR;; are in the interval [0, 1].

Proof: It has been proven that the values of a;; and f;; are within the interval [0, 1], that a;; +
Bij =1, and that E;; = |al-]- — ,Bij| € [0, 1]. To prove that the values of RR;; are within the interval
[0, 1] two cases need to be examined: a;; = f;; and B;; > a;;.

First case, a;; = B;j:

In this case, it is known that:
a;; = 0.5

Thus:
Eij = |ayj — Bij| = @i — By

When these values are applied in the formula for RR;; (Eq. (15)) the following conclusion can be
derived:

a;i a;j a;i
RRU = Y = 2l = l =
Bij + Eij  Bijtaij— By i
This proves that for a;; = 0.5, the value of RR;; is always equal to 1.
Second case, B;; > ;;:
In this case, it is known that:
aij < 0.5
Thus:
Eij = |ay — Bij| = Bij — ayj
When these values are applied in the formula for RR;; the following conclusion can be derived:
o aij _ aij _ aij
Yoo Bt E; Byt By—ay 2B —ay
Since the following rule holds:

1

RR

Bij=1—ay
We obtain the following expression:
aij aij _ aij

2Bj—ayy 2-(1—ay;)—a;; 2—3a;
Thus, the final result is:
__ Yy

U — 3a;;
Since in this case a;; € [0, 0.5), the given expression for RR;; yields a positive value less than 1.
For boundary values, the following holds:

e Ifa;; =0,thenRR;; =0;

e |Ifa;; =0.5 then RR;; = 1;

This proof can also be illustrated with a numerical example shown in Table 1.

RR

Table 1
Numerical Example of the Impact of a;; and f;; on the value of RR;;
a;;j Bij E;; RR;
0 1 1 0
0.1 0.9 0.8 0.06
0.2 0.8 0.6 0.14
0.3 0.7 0.4 0.27
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a;; Bij E;; RR;;
0.4 0.6 0.2 0.5
0.5 0.5 0 1
0.6 0.4 0.2 1
0.7 0.3 0.4 1
0.8 0.2 0.6 1
0.9 0.1 0.8 1
1 0 1 1

In this way, it has been proven that the values of RR;; always lie within the interval [0, 1].

Analyzing the values of RR;; leads to the conclusion that any alternative closer to the minimum
value, i.e., with §;; = 0.5, will have RR;; = 1. This characteristic of the RADAR method supports the
"stability" of the solution.

Thus, the final ranking is significantly influenced by alternatives that have a;; > 0.5 for a larger
number of criteria. In other words, these are the alternatives that are "above average" for multiple
criteria. However, the impact of criterion weights can also be significant, as explained in the
following section.

5. Ranking of alternatives

According to step 6 of the proposed algorithm in the RADAR method, as well as in the RADAR I
variant, weighting of values is performed. This step is carried out only when the considered criteria
have different levels of importance.

Therefore, in this step, the values of the weighted relative relationship matrix, [WRRL-]-]IX], are

determined using Eq. (17).

The final ranking of alternatives is determined based on the aggregated ranking index, RI;,
which is calculated using Eq. (18).

The highest value of RI; is always equal to 1. This value is assigned to the best alternative (there
may be more than one). The ranking of alternatives is obtained by sorting them in a non-increasing
order. The last alternative in the ranking is the one with the lowest RI; value.

Theorem 6. Mathematical proof of ranking consistency through the weighting of RR;; values.
Proof: Since WRR;; is calculated using the expression WRR;; = RR;; - w;, where the values of
RR;; € [0, 1], and the criteria ,weights w; € (0, 1], it follows that the range of WRR;; is:
0 < WRR;; < w;
Where the rule holds that:

j=1
Let Z§=1 WRR; be denoted as S; for clearer interpretation, then according to the expression for
RI; we obtain:
__ mins§;
RI; = s,
Then it holds that:
Si = min Si
From this, it follows that:

(29)
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min S;
i = <
Si

Where RI; = 1 at the value S; = min §; and is assigned to the best alternative.

Since w; > 0 and RR;; = 0 always hold, it follows that S; > 0 for every considered alternative,
Li=1..1

Let us test the impact of w; on the final ranking of alternatives. If there exist two alternatives, a
and b, for which it is known that S, > S, where neither of them is min S;, then:
Smin Smin

Sa Sb

From this, it follows that:
RI, > RI,

Which means that alternative a is ranked higher than alternative b.

The presented theorem can be illustrated with a numerical example through the application of
the RADAR method. If we have the following decision matrix:

(Ul = 0.4 wz = 0.35 (1)3 = 0.25_
R =1
j=1 Jj=2 j=3
i=1 1 1 1 > R, =1
i=2 1 1 1
RI; =1
i =3 1 1 1

However, if each alternative is the best according to one of the criteria (having a value of 2),
the values of RI; change accordingly:

w; =04 w, =035 w;=0.25]
R =1
j=1 j=2 j=3
i=1 ) 1 1 = RI, = 0.96
i=2 1 2 1
RI; = 0.88
li=3 1 1 2

From the given example, it can be observed that although the alternatives have equal values of
RI; = 1 when criterion weights are not considered, applying the weighting process makes the best
alternative the one that performs best according to the most important criterion, j = 1. The
second-best alternative is the one that excels in the second most important criterion, j = 2, while
the third-place alternative is the one that performs best in the least important criterion, j = 3.

In this way, even with a simple numerical example, it is demonstrated that criterion weights
influence the ranking of alternatives. The better an alternative performs in a more important
criterion, the higher the likelihood of achieving a better position in the final ranking.

6. Numerical examples and comparison of RADAR and RADAR Il

After explaining the fundamental characteristics of the RADAR method and its variant, RADAR I,
this chapter provides numerical examples to illustratively present and explain some of the features
of these two methods.
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6.1 Numerical example 1

Let the supplier selection problem be considered hypothetically. A total of five potential
suppliers, {1, ..., 1, ...} are evaluated based on four relevant criteria, {1, ..., J, ...J}. The criteria are
of different natures: unit procurement cost (j = 1) in euros, delivery time (j = 2) in days, product
quality (j = 3) on a scale from 1 to 10, and supplier flexibility (j = 4) on a scale from 1 to 10. The

first two criteria are cost-type, while the latter two are benefit-type. The data on suppliers are
provided in Table 2.

Table 2
Decision matrix
j=1 j=2 j=3 j=4

i=1 12.5 2.4 9 4
i=2 14.9 2.6 10 6
i=3 11.3 1.5 9 9
i=4 9.6 3.0 6 7
i=5 11.5 2.0 8 10

Let us consider that the criteria weights are known: w; = 0.35, w, = 0.2, w3 = 0.3, and w, =
0.15.
First, the elements of the maximum proportion matrix, @ and the minimum proportion matrix,

[ were calculated for the application of the RADAR and RADAR Il methods. These values are given
in Tables 3 and 4, respectively.

Table 3
The maximum and minimum proportion matrix — RADAR
a B
j=1 j=2 Jj=3 j=4 j=1 j=2 j= j=

i=1 0.522 0.561 0.426 0.714 0.478 0.439 0.574 0.286
i=2 0.608 0.600 0.375 0.526 0.392 0.400 0.625 0.474
i=3 0.472 0.333 0.426 0.331 0.528 0.667 0.574 0.669
i=4 0.392 0.667 0.625 0.449 0.608 0.333 0.375 0.551
i=5 0.480 0.471 0.484 0.286 0.520 0.529 0.516 0.714

Example of calculating the first element of the @ and S matrix (RADAR):

12.5
_ 96 _ 1.302 — 0522
MTT49 125 1192+1302
12.5 9.6
14.9
12.5
P11 = 149 125 0.478
125196
Table 4
The maximum and minimum proportion matrix — RADAR |l
a B
j=1 j=2 j=3 j=4 j= j= j= j=
i=1 0.547 0.600 0.250 1.000 0.453 0.400 0.750 0.000
i = 1.000 0.733 0.000 0.667 0.000 0.267 1.000 0.333
i=3 0.321 0.000 0.250 0.167 0.679 1.000 0.750 0.833
i =4 0.000 1.000 1.000 0.500 1.000 0.000 0.000 0.500
i=5 0.358 0.333 0.500 0.000 0.642 0.667 0.500 1.000
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Example of calculating the first element of the @ and  matrix (RADAR Il):

B 12.5-9.6 29 0.547

M1T 149 -125) + (125-96) 24+29
14.9 — 12.5

ﬁll == 04‘53

T (149 — 12.5) + (12.5 — 9.6)
Table 5 presents the weighted relative relationship matrix obtained using the RADAR method,

while Table 6 presents the weighted relative relationship matrix obtained using the RADAR II
method.

Table 5
The weighted relative relationship matrix — RADAR
j=1 j=2 j=3 j=4
i=1 0.350 0.200 0.176 0.150
i=2 0.350 0.200 0.129 0.150
i=3 0.282 0.067 0.176 0.049
i=4 0.166 0.200 0.300 0.103
i=5 0.301 0.160 0.265 0.038

Example of calculating the first element of the weighted relative relationship matrix (RADAR):
E11 = |0{11 - Blll = 0.522 - 0.4‘78 = 0.04‘4‘
a1 0.522
RR11 = = =
pi11 +E;1 0478 4+ 0.044
WRRll = RRll " (1)1 = 1 " 035 = 035

Table 6
The weighted relative relationship matrix — RADAR I
j=1 j=2 j=3 j=4
i=1 0.350 0.200 0.060 0.150
i=2 0.350 0.200 0.000 0.150
i=3 0.108 0.000 0.060 0.017
i=4 0.000 0.200 0.300 0.150
i=5 0.136 0.067 0.300 0.000

Example of calculating the first element of the weighted relative relationship matrix (RADAR II):
Ei; = |la;; — B11] = 0.547 — 0.453 = 0.094
a1 0.547
RRll == = =
fi1+Eq1 0453 4+ 0.094
WRR11 = RR11 " (l)l = 1 " 035 = 035

The aggregated ranking index, RI;, as well as the ranking of the considered alternatives using
the RADAR and RADAR Il methods, is given in Table 7.

Table 7
Ranking of alternatives (Numerical example 1)
RADAR RADAR Il
RI; Rank RI; Rank
i = 0.655 5 0.243 5
i = 0.693 4 0.264 4
i=3 1.000 1 1.000 1
i = 0.746 3 0.284 3
i = 0.753 2 0.368 2
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Example of calculating the RI; parameter for RADAR:
L= min(0.876,0.829,0.574,0.770,0.763) _ 0574

! 0.876 = 0876~ 062
Example of calculating the RI; parameter for RADAR II:
L= min(0.760, 0.700, 0.185, 0.650, 0.502) 0185 0.243

! 0.760 ~0.760
In the considered case, the alternatives take the same ranking position using both the RADAR

and RADAR Il methods.

6.2 Numerical example 2

Let the same example be considered. In this case, the criteria weights have been changed, and
their values are: w; = 0.2, w, = 0.3, w3 = 0.3, and w, = 0.2. The aggregated ranking index, RI;,
as well as the ranking of the considered alternatives using the RADAR and RADAR Il methods, is
given in Table 8.

Table 8
Ranking of alternatives (Numerical example 2)
RADAR RADAR 11
RI; Rank RI; Rank

i=1 0.574 5 0.190 4
i=2 0.607 3 0.206 3
i=3 1.000 1 1.000 1
i=4 0.604 4 0.180 5
i=5 0.693 2 0.302 2

In this case, the ranking of the alternatives remains the same, except that alternatives i = 1 and
i = 4 have swapped places as the last and second-to-last in the ranking.

6.3 Numerical example 3

In the third example, the following criteria weights were taken into account: w; = 0.15, w, =
0.25, w3z = 0.2, and w, = 0.4. The aggregated ranking index, RI;, as well as the ranking of the
considered alternatives using the RADAR and RADAR Il methods, is given in Table 9.

Table 9
Ranking of alternatives (Numerical example 3)
RADAR RADAR 11
RI; Rank RI; Rank

i=1 0.494 5 0.156 4
i=2 0.512 4 0.164 3
i=3 1.000 1 1.000 1
i=4 0.568 3 0.154 5
i=5 0.748 2 0.383 2

In the third example, there are somewhat greater changes in the ranking of alternatives.
However, even in this case, the top two alternatives remain unchanged in the ranking. The key
change is observed for alternative i = 4, which is ranked third using the RADAR method, while it
holds the fifth position when the RADAR Il method is applied.
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6.4 Discussion

Based on the presented examples, the key conclusion is that there are no significant deviations
in the ranking of alternatives when the criterion weights change. This indicates that the obtained
solution is reliable and that the methods are robust. Figure 1 illustrates the changes in the ranking
of alternatives across the three numerical examples when applying the RADAR method.

1 Il 1 ]
/\
\
2 / \
/ 7 Numerical
/ \ S
\ y, example 1
- / \/
T 3 7 Numerical
=
/ example 2
/ Numerical
4 /
/ example 3
/
/
/4
5 —
i=1 i=2 i=3 i=4 i=5

Fig. 1. Changes in the ranking of alternatives when applying the RADAR method

In the same way, Figure 2 illustrates the changes in the ranking of alternatives when using the
RADAR Il method.

/ \ Numerical
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o / /
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g \ /
4 - / \ / Numerical
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5 !
i=1 i=2 i=3 i=4 i=5

Fig. 2. Changes in the ranking of alternatives when applying the RADAR Il method

In Figures 1 and 2, it is clearly observed that there is no significant difference in the changes in
the ranking of alternatives. In fact, when applying the RADAR method, numerical examples 1 and 3
yield the same ranking. The same applies to the RADAR Il method, but for numerical examples 2
and 3. It is important to emphasize that the top two alternatives in the ranking do not change
places in any of the six considered cases.

Furthermore, the ranking comparison can also be conducted for each numerical example
individually. Since the ranking in numerical example 1 is identical for both the RADAR and RADAR ||
methods, Figures 3 and 4 illustrate only the changes for numerical examples 2 and 3, respectively.
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Fig. 3. Differences in the ranking of alternatives in numerical example 2

As seen in Figure 3, in numerical example 2, the ranking of alternatives differs only for the two
lowest-ranked alternatives, which switch places in this case. These are alternativesi = 1 and i = 4.
The RADAR method favors i = 4 as an alternative that is sufficiently stable according to two
criteria, j = 1 and j = 4, while RADAR Il is somewhat stricter and considers it stable only with
respect to j = 1, where it is also the best. This phenomenon can be confirmed based on the RR;;
values.

On the other hand, both methods perceive i = 1 as stable only concerning j = 3. However,
since the weight of j = 3 is higher than that of j = 1, RADAR Il ranks i = 1 better than i = 4.
Therefore, the key difference lies in the lower tolerance of the RADAR Il method for deviations of
alternatives from the best solution.
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Rank
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Fig. 4. Differences in the ranking of alternatives in numerical example 3

In the third numerical example (Figure 4), the greatest difference in the ranking of alternatives
occurs. While the first and second-ranked alternatives do not change places, and the fourth and
fifth alternatives maintain their relative positions, alternative i = 4 experiences a relatively large
deviation. In the RADAR method, it is ranked third, whereas in RADAR 11, it is placed last.

As established in the previous example, this alternative is stable according to criteria j = 1 and
Jj = 4 in the RADAR method, whereas in RADAR I, it is stable only concerning j = 1. Since j = 1 is
by far the least important criterion in this case, the RADAR Il method does not recognize i = 4 as a
relevant alternative. However, since the RADAR method identifies this alternative as stable also
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with respect to j = 4, which is the most important criterion in this case, it reaches third place in the
ranking.

Thus, once again, the difference is due to the stricter nature of the RADAR Il method, where it is
significantly more difficult for alternatives to be considered acceptable according to the evaluated
criteria.

From these examples, it can be concluded that the RADAR method is preferable when ranking
precision is more important, allowing for more subtle differentiation among alternatives based on
each criterion. However, if it is more crucial for the selected solution to be sufficiently stable
according to as many important criteria as possible, the RADAR Il method is the better choice.

7. Conclusions

In this study, a mathematical explanation of the RADAR and RADAR Il methods is provided. The
nature of these methods is examined through mathematical proofs of the given assumptions. In
other words, the principles governing the methods' functionality are explained.

Since the key difference between the RADAR and RADAR Il approaches lies in the determination
of the maximum and minimum proportion matrices, the impact of this step on the final ranking of
alternatives has been analyzed. The results indicate that the RADAR method is more suitable for
slightly more precise ranking, allowing for somewhat greater deviations of alternative values from
the best value for the considered criterion. On the other hand, RADAR Il is significantly more
rigorous and demands a higher level of "perfection." Nevertheless, both methods seek the most
stable solution across all considered criteria.

Future research should focus on expanding the RADAR method by applying various techniques
for determining criterion weights, as well as integrating different fuzzy approaches. Additionally,
efforts should be made to apply the method in other economic sectors beyond the industrial
domain.
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