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This paper presents a mathematical explanation of one of the Multi-Attribute 
Decision-Making (MADM) methods—the RAnking based on Distance And 
Range (RADAR) method—along with its modified variant, RADAR II. 
Through mathematical proofs, the influence of each step of the method on 
the final ranking of alternatives is analyzed. The methods are tested on three 
numerical examples with varying criterion weights. The robustness of the 
methods, as well as their fundamental characteristics, is demonstrated. A 
comparative analysis reveals that although both methods prioritize 
alternatives based on their stability across all criteria—particularly the most 
important ones—the RADAR II method is somewhat more rigorous and 
stringent, whereas the original RADAR method is more flexible and yields 
more objective results. 
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1. Introduction 

Multi-Attribute Decision-Making (MADM) is a mathematical tool applied across various 
scientific domains. In the literature, it is also referred to as Multi-Attribute Decision Analysis 
(MADA). Generally, MADM encompasses a set of mathematical methods designed for solving 
discrete optimization problems. More broadly, along with Multi-Objective Decision Making 
(MODM), it falls under the category of Multi-Criteria Decision-Making (MCDM) methods and, as 
such, can be classified within the domain of Operational Research (OR). 

The fundamental characteristic of MADM methods is that a predefined set of alternatives is 
evaluated based on a predefined set of attributes/criteria. Therefore, they solve discrete 
optimization problems. 

A large number of MADM methods have been developed and are widely used in the relevant 
literature. Likewise, different authors have proposed various classifications of these methods. One 
of the earliest and most fundamental classifications of MADM methods was presented in the 
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publication by [1]. The author categorizes all MADM methods into three main groups: (1) methods 
for determining relevant criteria and alternatives, (2) methods for establishing the importance 
(weights) of criteria, and (3) methods for ranking alternatives. 

Methods for determining criterion weights are frequently used in the literature. Although some 
of them can also be used for ranking alternatives, their primary purpose is to assign weights to 
criteria. Some of the most well-known methods include Analytic Hierarchy Process (AHP) [2,3], 
Analytic Network Process (ANP) [4], CRiteria Importance Through Intercriteria Correlation (CRITIC) 
[5], Decision-Making Trial and Evaluation Laboratory (DEMATEL) (see [6,7]), and Best-Worst 
Method (BWM) [8], as well as some newer methods such as Level Based Weight Assessment 
(LBWA) [9], Stochastic Identification of Weights (SITW) [10], Defining Interrelationships between 
Ranked Criteria (DIBR) [11], DIBR II [12,13], and others. 

The most commonly used method from this group is AHP. It has been applied for determining 
criterion weights in various types of problems, such as supplier selection [14], site selection [15], 
and production planning problems [16], among others. 

The largest group of methods consists of those used for ranking alternatives. This group 
includes methods based on different mathematical principles. Some of the most well-known 
methods are Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [17], Multi-
Criteria Optimization and Compromise Solution (serb. VIšekriterijumska Optimizacija i 
Kompromisno Rešenje – VIKOR) [18], Multi-Attributive Border Approximation area Comparison 
(MABAC) [19], Measurement Alternatives and Ranking according to the COmpromise Solution 
(MARCOS) [20], Evaluation based on Distance from Average Solution (EDAS) [21], Additive Ratio 
Assessment (ARAS) [22], (Multi-Attributive RealIdeal Comparative Analysis (MARICA) [23], RAnking 
based on Distance And Range (RADAR) [24,25], and others. 

These methods have a broad and diverse range of applications. For instance, they have been 
utilized for supplier selection [14,20], in the field of Information Technology [26], the oil and gas 
industry [27], wastewater treatment technologies [28], improving manufacturing process reliability 
[29], risk assessment [30], material selection [31], and engineering management [12], among 
others. 

The selection of an appropriate MADM method depends on numerous factors related to the 
nature of the problem itself. It cannot be stated that one method is always superior to another; 
rather, certain methods are more suitable for specific types of problems. 

The aim of this paper is to provide fundamental mathematical explanations of the RADAR 
method. The method was first introduced in [24], where it was applied to prioritize failure modes in 
the automotive industry. Subsequently, it was utilized for industrial equipment selection [25], 
where a new variant of the method (RADAR II) was also presented. Additionally, through the 
application of fuzzy set theory, the method has been extended and integrated into the Process 
Failure Mode and Effect Analysis (PFMEA) framework in [32]. 

The key difference between RADAR and RADAR II lies in the normalization process, specifically 
in determining the maximum and minimum proportion matrices, which may later impact the 
ranking of alternatives. The objective is to illustrate these differences through numerical examples. 
Both RADAR and RADAR II are well-suited for reliability-related problems, as they identify the most 
stable solution across all considered criteria. Furthermore, the mathematical foundation of the 
method is designed to mitigate the influence of alternatives that perform exceptionally well on less 
important criteria while effectively highlighting the quality of alternatives that perform well on 
critical criteria. 
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The fundamental concept and characteristics of the method are outlined in [24]. In this study, a 
mathematical proof is provided, and the operational principles of the method are explained. In 
addition, through numerical examples, the key features of RADAR and RADAR II are demonstrated. 

Following the introductory chapter, Chapters 2 to 5 provide a mathematical explanation of the 
method’s functioning. Chapter 6 presents numerical examples along with a discussion of the 
obtained results. Finally, Chapter 7 summarizes the key findings of this research. 

 
2. Algorithm for applying the RADAR method 

The fundamental steps of the RADAR method were first introduced in the study by [24], while 
the modification of the method and the RADAR II variant were first published in Komatina [25]. To 
ensure a clearer explanation of the method throughout the rest of the paper, this chapter presents 
the fundamental steps of both the RADAR and RADAR II methods.  

Let us consider a set of alternatives {1, … , 𝑖, … 𝐼}, evaluated according to a set of criteria 
{1, … , 𝑗, … 𝐽}. The steps of the RADAR method can then be presented as follows [24,25]:  

Step 1. Formation of the decision matrix: 

[𝑀𝑖𝑗]𝐼×𝐽
      (1) 

Step 2. The maximum proportion matrix, 𝛼: 

[𝑎𝑖𝑗]𝐼×𝐽
      (2) 

For the benefit type of criteria (RADAR): 

𝑎𝑖𝑗 =

max
𝑖

𝑀𝑖𝑗

𝑀𝑖𝑗

((
max

𝑖
𝑀𝑖𝑗

𝑀𝑖𝑗
)+(

𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗
)) 

      (3) 

For the cost type of criteria (RADAR): 

𝛼𝑖𝑗 =

𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗

((
max

𝑖
𝑀𝑖𝑗

𝑀𝑖𝑗
)+(

𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗
))

     (4) 

For the benefit type of criteria (RADAR II): 

𝑎𝑖𝑗 =
max

𝑖
𝑀𝑖𝑗−𝑀𝑖𝑗

((max
𝑖

𝑀𝑖𝑗−𝑀𝑖𝑗)+(𝑀𝑖𝑗−min
𝑖

𝑀𝑖𝑗)) 

       (5) 

For the cost type of criteria (RADAR II) 

𝛼𝑖𝑗 =
𝑀𝑖𝑗−min

𝑖
𝑀𝑖𝑗

((max
𝑖

𝑀𝑖𝑗−𝑀𝑖𝑗)+(𝑀𝑖𝑗−min
𝑖

𝑀𝑖𝑗))

       (6) 

Step 3. The minimum proportion matrix, 𝛽: 

[𝛽𝑖𝑗]𝐼×𝐽
      (7) 

For the benefit type of criteria (RADAR): 

𝛽𝑖𝑗 =

𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗

((
max

𝑖
𝑀𝑖𝑗

𝑀𝑖𝑗
)+(

𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗
))

      (8) 

For the cost type of criteria (RADAR): 
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𝛽𝑖𝑗 =

max
𝑖

𝑀𝑖𝑗

𝑀𝑖𝑗

((
max

𝑖
𝑀𝑖𝑗

𝑀𝑖𝑗
)+(

𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗
)) 

      (9) 

For the benefit type of criteria (RADAR II): 

𝛽𝑖𝑗 =
𝑀𝑖𝑗−min

𝑖
𝑀𝑖𝑗

((max
𝑖

𝑀𝑖𝑗−𝑀𝑖𝑗)+(𝑀𝑖𝑗−min
𝑖

𝑀𝑖𝑗))

               (10) 

For the cost type of criteria (RADAR II) 

𝛽𝑖𝑗 =
max

𝑖
𝑀𝑖𝑗−𝑀𝑖𝑗

((max
𝑖

𝑀𝑖𝑗−𝑀𝑖𝑗)+(𝑀𝑖𝑗−min
𝑖

𝑀𝑖𝑗)) 

                (11) 

From the given information, the following rules can be concluded: 

• 𝑎𝑖𝑗 for a benefit-type criteria is calculated in the same way as 𝛽𝑖𝑗 for a cost-type criteria. The 

reverse also holds.  

• For every considered 𝑖, 𝑖 = 1,… 𝐼 evaluated according to any 𝑗 = 1,… , 𝐽, the following holds: 
𝑎𝑖𝑗 + 𝛽𝑖𝑗 = 1. 

Step 4. The empty range matrix: 

[𝐸𝑖𝑗]𝐼×𝐽
                 (12) 

where 

𝐸𝑖𝑗 = |𝛼𝑖𝑗 − 𝛽𝑖𝑗|                (13) 

Step 5. The relative relationship matrix: 

[𝑅𝑅𝑖𝑗]𝐼×𝐽
                 (14) 

where: 

𝑅𝑅𝑖𝑗 =
𝛼𝑖𝑗

𝛽𝑖𝑗+𝐸𝑖𝑗
                (15) 

Step 6. The weighted relative relationship matrix: 

[𝑊𝑅𝑅𝑖𝑗]𝐼×𝐽
                (16) 

Where: 
𝑊𝑅𝑅𝑖𝑗 = 𝑅𝑅𝑖𝑗 ∙ 𝜔𝑗                (17) 

Step 7. The aggregated ranking index, 𝑅𝐼𝑖: 

𝑅𝐼𝑖 =
min∑ 𝑊𝑅𝑅𝑖

𝐽
𝑗=1

∑ 𝑊𝑅𝑅𝑖
𝐽
𝑗=1

                 (18) 

The values of 𝑅𝐼𝑖 need to be sorted in a non-increasing order. The best alternative is the one 
with the highest 𝑅𝐼𝑖 value, which is always 1. The lowest-ranked alternative is the one with the 
smallest value of this coefficient. 

 
3. Normalization of values: α and β matrices 
3.1 Range of α and β values 

The normalization procedure in the RADAR method is defined in a dual manner. Instead of a 
single value, two normalized values are obtained: the distance from the best solution, 𝛼, and the 
distance from the worst solution, 𝛽. 

In the basic RADAR method, the elements of the maximum proportion matrix [𝑎𝑖𝑗]𝐼×𝐽
 are 

determined according to Eq. (3) and Eq. (4). 
The value 𝑎𝑖𝑗 is within the interval [0, 1]. A value closer to 0 indicates that alternative 𝑖, 𝑖 =

1, … , 𝐼 concerning criterion𝑗, 𝑗 = 1,… , 𝐽 is closer to the best available value. A value of 1 indicates 
the opposite. 
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Let us consider that: 

𝑋 =
max

𝑖
𝑀𝑖𝑗

𝑀𝑖𝑗
                            (19) 

𝑌 =
𝑀𝑖𝑗

min
𝑖

𝑀𝑖𝑗
                          (20) 

It follows that the values of 𝑎𝑖𝑗 are:  

For the benefit type of criteria: 

𝑎𝑖𝑗 =
𝑋

𝑋+𝑌
                     (21) 

For the cost type of criteria: 

𝑎𝑖𝑗 =
𝑌

𝑋+𝑌
                     (22) 

Theorem 1. Monotonicity of 𝑎𝑖𝑗 with respect to 𝑋 for a benefit-type criterion.  

Proof: In the case where 𝑋 increases while the value of 𝑌 remains constant, the value of 𝑎𝑖𝑗 

increases. Let us consider the function in Eq. (21). 
In that case, the first derivative of the function 𝑎𝑖𝑗 with respect to 𝑋 according to the quotient 

rule, can be written as follows: 

𝜕𝑎𝑖𝑗

𝜕𝑋
=

𝜕

𝜕𝑋
   

𝑋

𝑋+𝑌
=

(𝑋+𝑌)∙
𝑑

𝑑𝑋
(𝑋)−𝑋∙

𝑑

𝑑𝑋
(𝑋+𝑌)

(𝑋+𝑌)2
                        (23) 

Since 𝑌 is constant, the following holds: 
𝑑

𝑑𝑋
(𝑋) = 1 

𝑑

𝑑𝑋
(𝑋 + 𝑌) = 1 

From this, it follows that: 
𝜕𝑎𝑖𝑗

𝜕𝑋
=

(𝑋+𝑌)∙1−𝑋∙1

(𝑋+𝑌)2
=

𝑌

(𝑋+𝑌)2
                         (24) 

As 𝑋 > 0 and 𝑌 > 0 always hold, it follows that: 
(𝑋 + 𝑌)2 > 0 

Therefore: 
𝜕𝑎𝑖𝑗

𝜕𝑋
> 0 

In this way, it is proven that 𝑎𝑖𝑗 increases as the value of 𝑋 increases. In other words, the 

greater the difference between max
𝑖

𝑀𝑖𝑗 for a given criterion and the considered alternative 𝑀𝑖𝑗, 

the higher the value of  𝑎𝑖𝑗, meaning that the alternative is further from the best solution.  

 
Theorem 2. Monotonicity of 𝑎𝑖𝑗 with respect to 𝑌 for benefit-type criteria.  

Proof: In the case where 𝑌 increases while the value of 𝑋 remains constant, the value of 𝑎𝑖𝑗 

decreases. 
Let us consider the function in Eq. (21). In this case, the first derivative of the function 𝑎𝑖𝑗 with 

respect to 𝑌 can be expressed using the quotient rule as follows: 

𝜕𝑎𝑖𝑗

𝜕𝑌
=

𝜕

𝜕𝑌
   

𝑋

𝑋+𝑌
=

(𝑋+𝑌)∙
𝑑

𝑑𝑌
(𝑋)−𝑋∙

𝑑

𝑑𝑌
(𝑋+𝑌)

(𝑋+𝑌)2
                       (25) 

Since 𝑋 is constant, the following holds:  
𝑑

𝑑𝑌
(𝑋) = 0 

𝑑

𝑑𝑌
(𝑋 + 𝑌) = 1 

From this, it follows that: 
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𝜕𝑎𝑖𝑗

𝜕𝑌
=

(𝑋+𝑌)∙0−𝑋∙1

(𝑋+𝑌)2
=

−𝑋

(𝑋+𝑌)2
                    (26) 

Since 𝑋 > 0 and 𝑌 > 0 always hold, it follows that: 
(𝑋 + 𝑌)2 > 0 

Therefore: 
𝜕𝑎𝑖𝑗

𝜕𝑌
=

−𝑋

(𝑋 + 𝑌)2
< 0 

In this way, it is proven that 𝑎𝑖𝑗 decreases as the value of 𝑌 increases. In other words, the 

greater the difference between 𝑀𝑖𝑗 and the worst alternative according to a given criterion, 

min
𝑖

𝑀𝑖𝑗, the lower the value of 𝑎𝑖𝑗, meaning that the alternative is closer to the best solution.  

Both of these theorems also hold for cost-type criteria. However, 𝑎𝑖𝑗 for cost-type criteria is 

calculated in the same way as 𝛽𝑖𝑗 for benefit-type criteria. The reverse also applies. 

 
Example. These theorems can also be tested on a simple numerical example. Let us consider an 

initial value of 𝑋 = 10 and 𝑌 = 5. The criterion in question is of the benefit type. In this case: 

𝛼 =
10

10 + 5
= 0.667 

𝛽 =
5

10 + 5
= 0.333 

If we consider that the value of 𝑌 remains constant while 𝑋 increases to 15, we obtain:  

𝛼 =
15

15 + 5
= 0.75 

𝛽 =
5

15 + 5
= 0.25 

In this way, Theorem 1 is also proven through an example, where an increase in the value of 𝑋 
leads to an increase in 𝛼, provided that 𝑌 remains constant. In other words, the alternative is 
worse, i.e., it is further from the best alternative. The opposite also holds: if the value of 𝑋 
decreases, 𝛼 also decreases, assuming a constant 𝑌. 

If 𝑋 remains constant (initially 10) and 𝑌 increases to 20, then we obtain: 

𝛼 =
10

10 + 20
= 0.333 

𝛽 =
20

10 + 20
= 0.667 

In this way, Theorem 2 is also proven by example. When the value of 𝑌 increases while 𝑋 
remains constant, the value of 𝛼 decreases. The opposite also holds.  

 
3.2 Interdependence of α and β values 

Theorem 3. Mathematical proof that 𝛼 + 𝛽 = 1. 
Proof: The sum 𝛼 + 𝛽 can be expressed as follows: 

𝛼 + 𝛽 =
𝑋

𝑋+𝑌
+

𝑌

𝑋+𝑌
                     (27) 

Since both 𝛼 and 𝛽 have the same denominators, we can simply add the numerators: 

𝛼 + 𝛽 =
𝑋+𝑌

𝑋+𝑌
                          (28) 

From the given expression, it follows that: 
𝛼 + 𝛽 = 1 

In all situations from Example, the stated rule holds. Thus, it can be said that this theorem has 
also been tested on a numerical example. 
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The difference between the basic RADAR method and the RADAR II method lies only in the way 
𝛼 and 𝛽 are determined. Instead of using a ratio, the difference between the maximum and the 
considered value, as well as the difference between the considered value and the minimum, is 
taken, respectively. Although the mathematical operation has changed, the dependency of the 
variables remains the same and does not affect their relationship. 

Therefore, in the RADAR II method, 𝛼 and 𝛽 are determined according to Eq. (5) and Eq. (6), and 
also Eq. (10) and Eq. (11), respectively. 

The fundamental difference between these two approaches is that the RADAR II method allows 
𝛼 and 𝛽 to take a value of 1. In the basic RADAR method, this is not possible because they are 
always: 
𝑋 + 𝑌 > 𝑋     ⋁     𝑋 + 𝑌 > 𝑌 

In this case, the numerator and the denominator are never equal, so the values of 𝛼 and 𝛽 
cannot be 1. Likewise, the numerator cannot be 0 when the denominator is not 0. 

In the RADAR II method, the following rules apply (for the benefit-type criterion): 

• If 𝑀𝑖𝑗 = max
𝑖

𝑀𝑖𝑗, then 𝛼𝑖𝑗 = 0. This occurs when the considered value is simultaneously the 

maximum value. 

• If 𝑀𝑖𝑗 = min
𝑖

𝑀𝑖𝑗, then 𝛼𝑖𝑗 = 1. This occurs when the considered value is simultaneously the 

minimum value. 
For 𝛽𝑖𝑗 the opposite holds. Additionally, 𝛼 and 𝛽 are inverse for the cost-type criteria. 

From the above, it follows that for both the RADAR and RADAR II methods: 
𝛼 = 1 − 𝛽     ⋀     𝛽 = 1 − 𝛼 

The above holds for both benefit-type and cost-type criteria. 
When comparing the approaches used in the RADAR and RADAR II methods, the following 

conclusions can be drawn: 

• The RADAR method allows for finer adjustment of the values of 𝛼 and 𝛽, which can later 
influence the final ranking of an alternative. In the RADAR method, these values also depend 
on the range of values within the considered criterion. 

• RADAR II more clearly highlights the advantages and disadvantages of an alternative 
concerning a given criterion, respectively. This means that this approach is less flexible and 
tends to favour better alternatives while giving weaker alternatives fewer chances to 
achieve a higher overall ranking. 

Both approaches have certain advantages and disadvantages. However, the choice of method 
largely depends on the type of problem being considered, as explained in this paper. 

 
4. The Empty Range and Relative Relationship matrix 

Through steps 4 and 5 of the RADAR (and RADAR II) method application algorithm, the Empty 
Range and Relative Relationship Matrix are calculated. These two matrices are interconnected, 
which is why they are explained together. 

The values of the Empty range matrix, [𝐸𝑖𝑗]𝐼×𝐽
, are calculated using the Eq. (13). 

 
Theorem 4. Mathematical proof that the values of 𝐸𝑖𝑗 are within the interval [0, 1]. 

Proof: Since it has been proven that the values of 𝛼𝑖𝑗 and 𝛽𝑖𝑗 lie within the interval [0, 1], their 

sum is always 1, and their difference 𝛼𝑖𝑗 − 𝛽𝑖𝑗 is always within the interval [-1, 1]. The absolute 

value of this difference is therefore within the interval [0, 1]. Consequently, it follows that 𝐸𝑖𝑗 ∈

[0, 1]. 
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The values of the Relative Relationship Matrix, [𝑅𝑅𝑖𝑗]𝐼×𝐽
, are calculated using the Eq. (15). 

 
Theorem 5. Mathematical proof that the values of 𝑅𝑅𝑖𝑗 are in the interval [0, 1]. 

Proof: It has been proven that the values of 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are within the interval [0, 1], that 𝛼𝑖𝑗 +

𝛽𝑖𝑗 = 1, and that 𝐸𝑖𝑗 = |𝛼𝑖𝑗 − 𝛽𝑖𝑗| ∈ [0, 1]. To prove that the values of 𝑅𝑅𝑖𝑗 are within the interval 

[0, 1] two cases need to be examined: 𝛼𝑖𝑗 ≥ 𝛽𝑖𝑗 and 𝛽𝑖𝑗 > 𝛼𝑖𝑗. 

First case, 𝛼𝑖𝑗 ≥ 𝛽𝑖𝑗: 

In this case, it is known that: 
𝛼𝑖𝑗 ≥ 0.5 

Thus: 

𝐸𝑖𝑗 = |𝛼𝑖𝑗 − 𝛽𝑖𝑗| = 𝛼𝑖𝑗 − 𝛽𝑖𝑗 

When these values are applied in the formula for 𝑅𝑅𝑖𝑗 (Eq. (15)) the following conclusion can be 

derived: 

𝑅𝑅𝑖𝑗 =
𝛼𝑖𝑗

𝛽𝑖𝑗 + 𝐸𝑖𝑗
=

𝛼𝑖𝑗

𝛽𝑖𝑗 + 𝛼𝑖𝑗 − 𝛽𝑖𝑗
=

𝛼𝑖𝑗

𝛼𝑖𝑗
= 1 

This proves that for 𝛼𝑖𝑗 ≥ 0.5, the value of 𝑅𝑅𝑖𝑗 is always equal to 1.  

Second case, 𝛽𝑖𝑗 > 𝛼𝑖𝑗: 

In this case, it is known that: 
𝛼𝑖𝑗 < 0.5 

Thus: 

𝐸𝑖𝑗 = |𝛼𝑖𝑗 − 𝛽𝑖𝑗| = 𝛽𝑖𝑗 − 𝛼𝑖𝑗 

When these values are applied in the formula for 𝑅𝑅𝑖𝑗 the following conclusion can be derived:  

𝑅𝑅𝑖𝑗 =
𝛼𝑖𝑗

𝛽𝑖𝑗 + 𝐸𝑖𝑗
=

𝛼𝑖𝑗

𝛽𝑖𝑗 + 𝛽𝑖𝑗 − 𝛼𝑖𝑗
=

𝛼𝑖𝑗

2𝛽𝑖𝑗 − 𝛼𝑖𝑗
 

Since the following rule holds: 
𝛽𝑖𝑗 = 1 − 𝛼𝑖𝑗 

We obtain the following expression: 
𝛼𝑖𝑗

2𝛽𝑖𝑗 − 𝛼𝑖𝑗
=

𝛼𝑖𝑗

2 ∙ (1 − 𝛼𝑖𝑗) − 𝛼𝑖𝑗

=
𝛼𝑖𝑗

2 − 3𝛼𝑖𝑗
 

Thus, the final result is: 

𝑅𝑅𝑖𝑗 =
𝛼𝑖𝑗

2 − 3𝛼𝑖𝑗
 

Since in this case 𝛼𝑖𝑗 ∈ [0, 0.5), the given expression for 𝑅𝑅𝑖𝑗 yields a positive value less than 1. 

For boundary values, the following holds: 

• If 𝛼𝑖𝑗 = 0, then 𝑅𝑅𝑖𝑗 = 0; 

• If 𝛼𝑖𝑗 = 0.5, then 𝑅𝑅𝑖𝑗 = 1; 

This proof can also be illustrated with a numerical example shown in Table 1. 
 

Table 1 
Numerical Example of the Impact of 𝛼𝑖𝑗  and 𝛽𝑖𝑗 on the value of 𝑅𝑅𝑖𝑗 

𝜶𝒊𝒋 𝜷𝒊𝒋 𝑬𝒊𝒋 𝑹𝑹𝒊𝒋 

0 1 1 0 

0.1 0.9 0.8 0.06 

0.2 0.8 0.6 0.14 

0.3 0.7 0.4 0.27 
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𝜶𝒊𝒋 𝜷𝒊𝒋 𝑬𝒊𝒋 𝑹𝑹𝒊𝒋 

0.4 0.6 0.2 0.5 

0.5 0.5 0 1 

0.6 0.4 0.2 1 

0.7 0.3 0.4 1 

0.8 0.2 0.6 1 

0.9 0.1 0.8 1 

1 0 1 1 

 

In this way, it has been proven that the values of 𝑅𝑅𝑖𝑗 always lie within the interval [0, 1]. 

Analyzing the values of 𝑅𝑅𝑖𝑗 leads to the conclusion that any alternative closer to the minimum 

value, i.e., with 𝛽𝑖𝑗 ≥ 0.5, will have 𝑅𝑅𝑖𝑗 = 1. This characteristic of the RADAR method supports the 

"stability" of the solution. 
Thus, the final ranking is significantly influenced by alternatives that have 𝛼𝑖𝑗 > 0.5 for a larger 

number of criteria. In other words, these are the alternatives that are "above average" for multiple 
criteria. However, the impact of criterion weights can also be significant, as explained in the 
following section. 

 
5. Ranking of alternatives 

According to step 6 of the proposed algorithm in the RADAR method, as well as in the RADAR II 
variant, weighting of values is performed. This step is carried out only when the considered criteria 
have different levels of importance. 

Therefore, in this step, the values of the weighted relative relationship matrix, [𝑊𝑅𝑅𝑖𝑗]𝐼×𝐽
, are 

determined using Eq. (17). 
The final ranking of alternatives is determined based on the aggregated ranking index, 𝑅𝐼𝑖, 

which is calculated using Eq. (18). 
The highest value of 𝑅𝐼𝑖 is always equal to 1. This value is assigned to the best alternative (there 

may be more than one). The ranking of alternatives is obtained by sorting them in a non-increasing 
order. The last alternative in the ranking is the one with the lowest 𝑅𝐼𝑖 value. 

 
Theorem 6. Mathematical proof of ranking consistency through the weighting of 𝑅𝑅𝑖𝑗 values. 

Proof: Since 𝑊𝑅𝑅𝑖𝑗 is calculated using the expression 𝑊𝑅𝑅𝑖𝑗 = 𝑅𝑅𝑖𝑗 ∙ 𝜔𝑗, where the values of 

𝑅𝑅𝑖𝑗 ∈ [0, 1], and the criteria ,weights 𝜔𝑗 ∈ (0, 1], it follows that the range of 𝑊𝑅𝑅𝑖𝑗 is: 

0 ≤ 𝑊𝑅𝑅𝑖𝑗 ≤ 𝜔𝑗 

Where the rule holds that: 

∑𝜔𝑗

𝐽

𝑗=1

= 1 

Let  ∑ 𝑊𝑅𝑅𝑖
𝐽
𝑗=1  be denoted as 𝑆𝑖 for clearer interpretation, then according to the expression for 

𝑅𝐼𝑖 we obtain: 

𝑅𝐼𝑖 =
min𝑆𝑖

𝑆𝑖
                         (29) 

Then it holds that: 
𝑆𝑖 ≥ min 𝑆𝑖 

From this, it follows that: 
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𝑅𝐼𝑖 =
min 𝑆𝑖

𝑆𝑖
≤ 1 

Where 𝑅𝐼𝑖 = 1 at the value 𝑆𝑖 = min 𝑆𝑖 and is assigned to the best alternative. 
Since 𝜔𝑗 > 0 and 𝑅𝑅𝑖𝑗 ≥ 0 always hold, it follows that 𝑆𝑖 > 0 for every considered alternative, 

𝑖, 𝑖 = 1… , 𝐼. 
Let us test the impact of 𝜔𝑗 on the final ranking of alternatives. If there exist two alternatives, 𝑎 

and 𝑏, for which it is known that 𝑆𝑏 > 𝑆𝑎, where neither of them is min 𝑆𝑖, then: 
𝑆𝑚𝑖𝑛

𝑆𝑎
>

𝑆𝑚𝑖𝑛

𝑆𝑏
 

From this, it follows that: 
𝑅𝐼𝑎 > 𝑅𝐼𝑏 

Which means that alternative 𝑎 is ranked higher than alternative 𝑏. 
The presented theorem can be illustrated with a numerical example through the application of 

the RADAR method. If we have the following decision matrix: 

[
 
 
 
 
 
 
 
 

𝜔1 = 0.4 𝜔2 = 0.35 𝜔3 = 0.25

𝑗 = 1 𝑗 = 2 𝑗 = 3

𝑖 = 1 1 1 1

𝑖 = 2 1 1 1

𝑖 = 3 1 1 1 ]
 
 
 
 
 
 
 
 

 ⇒ 

𝑅𝐼1 = 1 
 
 

𝑅𝐼2 = 1 
 
 

𝑅𝐼3 = 1 

 However, if each alternative is the best according to one of the criteria (having a value of 2), 
the values of 𝑅𝐼𝑖 change accordingly: 

[
 
 
 
 
 
 
 
 

𝜔1 = 0.4 𝜔2 = 0.35 𝜔3 = 0.25

𝑗 = 1 𝑗 = 2 𝑗 = 3

𝑖 = 1 2 1 1

𝑖 = 2 1 2 1

𝑖 = 3 1 1 2 ]
 
 
 
 
 
 
 
 

 ⇒ 

𝑅𝐼1 = 1 
 
 

𝑅𝐼2 = 0.96 
 
 

𝑅𝐼3 = 0.88 

From the given example, it can be observed that although the alternatives have equal values of 
𝑅𝐼1 = 1 when criterion weights are not considered, applying the weighting process makes the best 
alternative the one that performs best according to the most important criterion, 𝑗 = 1. The 
second-best alternative is the one that excels in the second most important criterion, 𝑗 = 2, while 
the third-place alternative is the one that performs best in the least important criterion, 𝑗 = 3. 

In this way, even with a simple numerical example, it is demonstrated that criterion weights 
influence the ranking of alternatives. The better an alternative performs in a more important 
criterion, the higher the likelihood of achieving a better position in the final ranking. 

 
6. Numerical examples and comparison of RADAR and RADAR II 

After explaining the fundamental characteristics of the RADAR method and its variant, RADAR II, 
this chapter provides numerical examples to illustratively present and explain some of the features 
of these two methods. 
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6.1 Numerical example 1 
Let the supplier selection problem be considered hypothetically. A total of five potential 

suppliers, {1, … , 𝑖, … 𝐼} are evaluated based on four relevant criteria, {1, … , 𝑗, … 𝐽}. The criteria are 
of different natures: unit procurement cost (𝑗 = 1) in euros, delivery time (𝑗 = 2) in days, product 
quality (𝑗 = 3) on a scale from 1 to 10, and supplier flexibility (𝑗 = 4) on a scale from 1 to 10. The 
first two criteria are cost-type, while the latter two are benefit-type. The data on suppliers are 
provided in Table 2. 

 
Table 2 
Decision matrix 

 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

𝑖 = 1 12.5 2.4 9 4 

𝑖 = 2 14.9 2.6 10 6 

𝑖 = 3 11.3 1.5 9 9 

𝑖 = 4 9.6 3.0 6 7 

𝑖 = 5 11.5 2.0 8 10 

 
Let us consider that the criteria weights are known: 𝜔1 = 0.35, 𝜔2 = 0.2, 𝜔3 = 0.3, and 𝜔4 =

0.15. 
First, the elements of the maximum proportion matrix, 𝛼 and the minimum proportion matrix, 

𝛽 were calculated for the application of the RADAR and RADAR II methods. These values are given 
in Tables 3 and 4, respectively. 

 
Table 3 
The maximum and minimum proportion matrix – RADAR 

 
𝛼 𝛽 

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

𝑖 = 1 0.522 0.561 0.426 0.714 0.478 0.439 0.574 0.286 

𝑖 = 2 0.608 0.600 0.375 0.526 0.392 0.400 0.625 0.474 

𝑖 = 3 0.472 0.333 0.426 0.331 0.528 0.667 0.574 0.669 

𝑖 = 4 0.392 0.667 0.625 0.449 0.608 0.333 0.375 0.551 

𝑖 = 5 0.480 0.471 0.484 0.286 0.520 0.529 0.516 0.714 

 
Example of calculating the first element of the 𝛼 and 𝛽 matrix (RADAR): 

𝑎11 =

12.5
9.6

14.9
12.5

+
12.5
9.6

=
1.302

1.192 + 1.302
= 0.522 

𝛽11 =

14.9
12.5

14.9
12.5

+
12.5
9.6

= 0.478 

 

Table 4 
The maximum and minimum proportion matrix – RADAR II 

 
𝛼 𝛽 

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

𝑖 = 1 0.547 0.600 0.250 1.000 0.453 0.400 0.750 0.000 

𝑖 = 2 1.000 0.733 0.000 0.667 0.000 0.267 1.000 0.333 

𝑖 = 3 0.321 0.000 0.250 0.167 0.679 1.000 0.750 0.833 

𝑖 = 4 0.000 1.000 1.000 0.500 1.000 0.000 0.000 0.500 

𝑖 = 5 0.358 0.333 0.500 0.000 0.642 0.667 0.500 1.000 
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Example of calculating the first element of the 𝛼 and 𝛽 matrix (RADAR II): 

𝑎11 =
12.5 − 9.6

(14.9 − 12.5) + (12.5 − 9.6)
=

2.9

2.4 + 2.9
= 0.547 

𝛽11 =
14.9 − 12.5

(14.9 − 12.5) + (12.5 − 9.6)
= 0.453 

Table 5 presents the weighted relative relationship matrix obtained using the RADAR method, 
while Table 6 presents the weighted relative relationship matrix obtained using the RADAR II 
method.  

 
Table 5 
The weighted relative relationship matrix – RADAR 

 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

𝑖 = 1 0.350 0.200 0.176 0.150 

𝑖 = 2 0.350 0.200 0.129 0.150 

𝑖 = 3 0.282 0.067 0.176 0.049 

𝑖 = 4 0.166 0.200 0.300 0.103 

𝑖 = 5 0.301 0.160 0.265 0.038 

 
Example of calculating the first element of the weighted relative relationship matrix (RADAR): 

𝐸11 = |𝛼11 − 𝛽11| = 0.522 − 0.478 = 0.044 

𝑅𝑅11 =
𝛼11

𝛽11 + 𝐸11
=

0.522

0.478 + 0.044
= 1 

𝑊𝑅𝑅11 = 𝑅𝑅11 ∙ 𝜔1 = 1 ∙ 0.35 = 0.35 
 

Table 6 
The weighted relative relationship matrix – RADAR II 

 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

𝑖 = 1 0.350 0.200 0.060 0.150 

𝑖 = 2 0.350 0.200 0.000 0.150 

𝑖 = 3 0.108 0.000 0.060 0.017 

𝑖 = 4 0.000 0.200 0.300 0.150 

𝑖 = 5 0.136 0.067 0.300 0.000 
 

Example of calculating the first element of the weighted relative relationship matrix (RADAR II): 
𝐸11 = |𝛼11 − 𝛽11| = 0.547 − 0.453 = 0.094 

𝑅𝑅11 =
𝛼11

𝛽11 + 𝐸11
=

0.547

0.453 + 0.094
= 1 

𝑊𝑅𝑅11 = 𝑅𝑅11 ∙ 𝜔1 = 1 ∙ 0.35 = 0.35 
 

The aggregated ranking index, 𝑅𝐼𝑖, as well as the ranking of the considered alternatives using 
the RADAR and RADAR II methods, is given in Table 7.  

 

Table 7 
Ranking of alternatives (Numerical example 1) 

 
RADAR RADAR II 

𝑅𝐼𝑖  Rank 𝑅𝐼𝑖  Rank 

𝑖 = 1 0.655 5 0.243 5 

𝑖 = 2 0.693 4 0.264 4 

𝑖 = 3 1.000 1 1.000 1 

𝑖 = 4 0.746 3 0.284 3 

𝑖 = 5 0.753 2 0.368 2 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 63-80 

75 
 
 

Example of calculating the 𝑅𝐼1 parameter for RADAR: 

𝑅𝐼1 =
min(0.876, 0.829, 0.574, 0.770, 0.763)

0.876
=

0.574

0.876
= 0.655 

 
Example of calculating the 𝑅𝐼1 parameter for RADAR II: 

𝑅𝐼1 =
min(0.760, 0.700, 0.185, 0.650, 0.502)

0.760
=

0.185

0.760
= 0.243 

In the considered case, the alternatives take the same ranking position using both the RADAR 
and RADAR II methods. 

 
6.2 Numerical example 2 

Let the same example be considered. In this case, the criteria weights have been changed, and 
their values are: 𝜔1 = 0.2, 𝜔2 = 0.3, 𝜔3 = 0.3, and 𝜔4 = 0.2. The aggregated ranking index, 𝑅𝐼𝑖, 
as well as the ranking of the considered alternatives using the RADAR and RADAR II methods, is 
given in Table 8.  

 
Table 8 
Ranking of alternatives (Numerical example 2) 

 
RADAR RADAR II 

𝑅𝐼𝑖  Rank 𝑅𝐼𝑖  Rank 

𝑖 = 1 0.574 5 0.190 4 

𝑖 = 2 0.607 3 0.206 3 

𝑖 = 3 1.000 1 1.000 1 

𝑖 = 4 0.604 4 0.180 5 

𝑖 = 5 0.693 2 0.302 2 

 
In this case, the ranking of the alternatives remains the same, except that alternatives 𝑖 = 1 and 

𝑖 = 4 have swapped places as the last and second-to-last in the ranking. 
 

6.3 Numerical example 3 
In the third example, the following criteria weights were taken into account: 𝜔1 = 0.15, 𝜔2 =

0.25, 𝜔3 = 0.2, and 𝜔4 = 0.4. The aggregated ranking index, 𝑅𝐼𝑖, as well as the ranking of the 
considered alternatives using the RADAR and RADAR II methods, is given in Table 9. 

 
Table 9 
Ranking of alternatives (Numerical example 3) 

 
RADAR RADAR II 

𝑅𝐼𝑖  Rank 𝑅𝐼𝑖  Rank 

𝑖 = 1 0.494 5 0.156 4 

𝑖 = 2 0.512 4 0.164 3 

𝑖 = 3 1.000 1 1.000 1 

𝑖 = 4 0.568 3 0.154 5 

𝑖 = 5 0.748 2 0.383 2 

 
In the third example, there are somewhat greater changes in the ranking of alternatives. 

However, even in this case, the top two alternatives remain unchanged in the ranking. The key 
change is observed for alternative 𝑖 = 4, which is ranked third using the RADAR method, while it 
holds the fifth position when the RADAR II method is applied. 
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6.4 Discussion 
Based on the presented examples, the key conclusion is that there are no significant deviations 

in the ranking of alternatives when the criterion weights change. This indicates that the obtained 
solution is reliable and that the methods are robust. Figure 1 illustrates the changes in the ranking 
of alternatives across the three numerical examples when applying the RADAR method. 

 

 
Fig. 1. Changes in the ranking of alternatives when applying the RADAR method 

 
In the same way, Figure 2 illustrates the changes in the ranking of alternatives when using the 

RADAR II method. 
 

 
Fig. 2. Changes in the ranking of alternatives when applying the RADAR II method 

 
In Figures 1 and 2, it is clearly observed that there is no significant difference in the changes in 

the ranking of alternatives. In fact, when applying the RADAR method, numerical examples 1 and 3 
yield the same ranking. The same applies to the RADAR II method, but for numerical examples 2 
and 3. It is important to emphasize that the top two alternatives in the ranking do not change 
places in any of the six considered cases. 

Furthermore, the ranking comparison can also be conducted for each numerical example 
individually. Since the ranking in numerical example 1 is identical for both the RADAR and RADAR II 
methods, Figures 3 and 4 illustrate only the changes for numerical examples 2 and 3, respectively. 
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Fig. 3. Differences in the ranking of alternatives in numerical example 2 

 
As seen in Figure 3, in numerical example 2, the ranking of alternatives differs only for the two 

lowest-ranked alternatives, which switch places in this case. These are alternatives 𝑖 = 1 and 𝑖 = 4. 
The RADAR method favors 𝑖 = 4 as an alternative that is sufficiently stable according to two 
criteria, 𝑗 = 1 and 𝑗 = 4, while RADAR II is somewhat stricter and considers it stable only with 
respect to 𝑗 = 1, where it is also the best. This phenomenon can be confirmed based on the 𝑅𝑅𝑖𝑗 

values. 
On the other hand, both methods perceive 𝑖 = 1 as stable only concerning 𝑗 = 3. However, 

since the weight of 𝑗 = 3 is higher than that of 𝑗 = 1, RADAR II ranks 𝑖 = 1 better than 𝑖 = 4. 
Therefore, the key difference lies in the lower tolerance of the RADAR II method for deviations of 
alternatives from the best solution. 

 

 
Fig. 4. Differences in the ranking of alternatives in numerical example 3 

 
In the third numerical example (Figure 4), the greatest difference in the ranking of alternatives 

occurs. While the first and second-ranked alternatives do not change places, and the fourth and 
fifth alternatives maintain their relative positions, alternative i = 4 experiences a relatively large 
deviation. In the RADAR method, it is ranked third, whereas in RADAR II, it is placed last. 

As established in the previous example, this alternative is stable according to criteria 𝑗 = 1 and 
𝑗 = 4 in the RADAR method, whereas in RADAR II, it is stable only concerning 𝑗 = 1. Since 𝑗 = 1 is 
by far the least important criterion in this case, the RADAR II method does not recognize 𝑖 = 4 as a 
relevant alternative. However, since the RADAR method identifies this alternative as stable also 
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with respect to 𝑗 = 4, which is the most important criterion in this case, it reaches third place in the 
ranking. 

Thus, once again, the difference is due to the stricter nature of the RADAR II method, where it is 
significantly more difficult for alternatives to be considered acceptable according to the evaluated 
criteria. 

From these examples, it can be concluded that the RADAR method is preferable when ranking 
precision is more important, allowing for more subtle differentiation among alternatives based on 
each criterion. However, if it is more crucial for the selected solution to be sufficiently stable 
according to as many important criteria as possible, the RADAR II method is the better choice. 

 
7. Conclusions 

In this study, a mathematical explanation of the RADAR and RADAR II methods is provided. The 
nature of these methods is examined through mathematical proofs of the given assumptions. In 
other words, the principles governing the methods' functionality are explained. 

Since the key difference between the RADAR and RADAR II approaches lies in the determination 
of the maximum and minimum proportion matrices, the impact of this step on the final ranking of 
alternatives has been analyzed. The results indicate that the RADAR method is more suitable for 
slightly more precise ranking, allowing for somewhat greater deviations of alternative values from 
the best value for the considered criterion. On the other hand, RADAR II is significantly more 
rigorous and demands a higher level of "perfection." Nevertheless, both methods seek the most 
stable solution across all considered criteria. 

Future research should focus on expanding the RADAR method by applying various techniques 
for determining criterion weights, as well as integrating different fuzzy approaches. Additionally, 
efforts should be made to apply the method in other economic sectors beyond the industrial 
domain. 
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