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compromised inadvertently. These threats can often be mitigated by
implementing robust cybersecurity measures, such as Data Loss Prevention
(DLP), to ensure proper monitoring and control of all organizational data,
enforce policies without exceptions, and prevent unauthorized data transfers
or rule violations. Despite these measures, uncertainties remain regarding the
efficacy of identifying threats at various stages of data loss to mitigate their
adverse effects through effective cybersecurity. To address this, this paper
introduces Complex Linear Diophantine Fuzzy Relations (CLDFRs). For the
first time in fuzzy set theory, we analysed the relationships between various
threats and components of DLP-based data loss solutions. Additionally, we
present the concept of Hasse diagrams for Complex Linear Diophantine Fuzzy
Sets and Relations to examine different cybersecurity methods and
procedures. This approach helps determine the most effective strategy based
on Hasse diagram analysis. Furthermore, after applying specific constraints to
the decision-making process, the optimal cybersecurity approach is selected.
Finally, a comparative analysis demonstrates the advantages of the proposed
methods.
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1. Introduction

Since many problems concerning with uncertainty and vagueness are unable to be handled
efficiently by conventional set theory, which deals with crisp set and binary membership irrespective
of whether an element is involved in a set or not. By integrating doubts and inaccuracies relevant to
information based on real-world situations and human deductive reasoning, thus Zadeh [1]
presented the concept of fuzzy set theory in 1965 that renewed conventional set theory. In order to
indicate the extent of element’s existence in a set, a partial membership is enabled by fuzzy set theory
through which a gradual progression of a component’s existence in unit interval is illustrated. The
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versatility of FS in expressing inaccuracy and unpredictability renders it a useful tool to characterize
a complex system in which definite boundaries are difficult to identify or illusive. Furthermore, Klir
[2] presented a definition for the idea of relation among crisp set through which only yes-and-no type
problems can be solved. Since it deals with precise information so this theory of set fails to represent
uncertainty. Thus, an idea of fuzzy relation (FRs), or relations for FSs was put forward by Mendal [3].
FRs can indicate the degree, effectiveness and extent of good relations among any two FSs instead
of restricted to address only binary terms. A set of axioms for a comparatively basic form of FSs was
provided by Goguen [4]. Zywica [5] utilized FSs to analyze uncertainties in medical. Uncertainty,
gradualness and bipolarity via FRs were investigated by Dubis and Prade [6].

Furthermore, to address uncertainty and inaccuracy in complex structures, Ramot et al., [7] put
forward the concept of Complex fuzzy set (CFSs) in 2002, in which a complex number are utilized to
assign to membership degrees with real and imaginary parts known as amplitude term and phase
term respectively along with its values lies in unit interval, are presented. Moreover, the concept of
complex fuzzy relations (CFRs) through which a relation between two CFs is determined, was
presented by Ramot et al., [7]. Yazdanbakhsh and Dick [8] investigated the CFs. Liu [9] introduced the
use of distance measurement on CFs in decision-making applications. CFs was examined by Sobhi
[10]. An application for CFs were put forward by Tamir et al., [11].

In some cases, it become uncertain to identify an extent of set being a member or non-member,
thus an intuitionistic fuzzy set (IFS) as a situation-handling broadening of FS was introduced by
Atanassov [12] in 1999. The values of membership and non-membership degrees must vary in unit
interval respectively. Furthermore, the summation of membership and non-membership does not
surpass the unit interval. The IFS become FS if the non-membership degree equals to zero. Burillo et
al., [13] developed the invention of intuitionistic fuzzy relation (IFRs). Furthermore, Alkouri et al., [14]
put forward a novel proposal of complex intuitionistic fuzzy set (CIFS) in 2012, in order to deal with
complex structure relating with membership and non-membership of an element in a set. The IFSs
was further developed by Rehman et al., [15]. From a dynamic viewpoint, IFSs was further reviewed
by Yu et al., [16]. Moreover, the field of medicine [17], aggregation operator [18], pattern recognition
[19] and decision making [20] has given more attention to IFSs. Complex relations were used by Nasir
et al., [21], [22] to evaluate economic relationships. Some CIFS applications for Artificial Intelligence
were put forward by Garg and Rani [23].

Moreover, under certain conditions, the limit which is permitted for the total of membership and
non-membership degree exceeds boundary. Thus, a Pythagorean fuzzy set (PyFSs) was introduced by
Yager [24], [25] assuring that totality of square of membership and non-membership does not
surpass the unit interval. Furthermore, in order to deal with complex structures, Ullah et al., [26]
came up with a proposal of complex Pythagorean fuzzy set (CPyFSs). A PyFSs was examined by Peng
et al., [27]. Saikia et al., [28] presented an application in transportation problem based on advanced
similarity measure in PyFSs. Khan et al., [29] expanded PyFSs. Pan et al., [30] put forward the
guaternion model of PyFSs. Labassi et al., [31] introduced application in visualization technology via
novel approach through CPyFSs. Akram et al., [32] presented optimization technique through CPyFSs
for making decision.

Sometimes, PyFSs fails as a totality of square goes beyond the limit, so thus Yager [33] in 2016
suggested an idea of g-rung orthopair fuzzy set (g-ROFS) with a g-rung variable ensuring that totality
of g-exponent of membership and non-memberships respectively must be within unit interval.
Furthermore, Liu et al., [34] and Garg et al., [35] presented the proposal of complex g-rung orthopair
fuzzy set (Cq-ROFS) through which a complex structures facing uncertainties will be handled. The g-
ROFS was further investigated by Peng and Luo [36]. The first method for quantifying knowledge
related to g-ROFS was put forward by Khan et al., [37]. Demir et al., [38] presented an extensive
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approach for decision-making in service industry through g-ROFSs. Akram et al., [39] introduced
innovative approach to decision-making using Cq-ROFSs. Javeed et al., [40] proposed some
application of Cq-ROFSs in medical.

Furthermore, an investigation was conducted in order to concern some limitations related to
membership and non-membership mapping in FSs, IFSs, PyFSs and g-ROFSs models. Thus, in 2019
Riaz and Hashmi [41] came up with an idea of linear Diophantine fuzzy set (LDFSs) in order to get
around these restrictions by inserting reference parameters to IFS structure. By reducing the
shortcomings of current approaches of other set, it was declared that LDFS structure enables
unrestricted data determination in real-world situations. Additionally, LDFSs is demonstrated to be
broader than FSs, IFSs, PyFSs and g-ROFSs through the arbitrary attribute of reference parameter.
But in some cases, when it comes to resolve complex structure with C-valued membership degree,
non-membership degrees and reference parameters respectively, Kamaci [42] came up with an
extension of LDFSs as complex linear Diophantine fuzzy set (CLDFSs). CLDFSs appears with C-valued
membership degree, non-membership degrees and reference parameters respectively. Ayub et al.
[43], [44] put forward some linear Diophantine fuzzy relation (LDFRs) based novel approaches. Zia et
al., [45] presented applications of CLDFSs in multi-attribute decision-making. Guan et al., [46] came
up with an application of CLDFSs in engineering.

This paper presents the idea of Cartesian product among two CLDFSs. Additionally, through the
idea of CP of two CLDFSs, advanced invention of a complex linear Diophantine fuzzy relation CLDFR
is summarized. Furthermore, various kinds of CLDFRs such as complex linear Diophantine equivalence
fuzzy relation, complex linear Diophantine partial order fuzzy relation, complex linear Diophantine
composite fuzzy relation, complex linear Diophantine total order fuzzy relation, complex linear
Diophantine converse fuzzy relation and much more along with suitable examples, have also been
discussed. Besides these, for CLDFRs certain results have been established. Furthermore, for complex
linear Diophantine partial order fuzzy sets and relation, a concept of Hasse diagram have also been
shown. Also, following concepts such as maximum element, minimum element, maximal element,
minimal element, supremum, infimum, upper and lower bounds have been mentioned. In order to
compare a current concept presented in this paper to previous structures, it follows that CLDFSs and
CLDFRs are dominant over FSs, CFSs, IFSs, CIFSs, CPyFSs, CqQROFSs and LDFSs. As, the relationship
between CLDFSs examined by CLDFRs, consist of complex-valued membership degree, non-
membership degree and parameters. Furthermore, compared to other ideas, these conceptions are
far more adept at handling uncertainty. They can handle data with multiple variables more precisely
due to the presences of complex-valued membership degree, non-membership degree and
parameters without any restriction to any limitation.

Nowadays, Businesses handled considerably more data as they started to digitize their
operations. While there are many benefits associated with this digital transition, like increased
efficiency and connection, there are also new threats. Businesses began to recognize that breaches,
both intentional and unintentional, may occur to their sensitive and important data, which included
financial data, intellectual property, and personal information about consumers and staff. As
cybertheft often appeared in media headlines, individuals and institutions started advocating for
more stringent data protection regulations. Around this same period, legal entities began to pay
attention. For instance, the first law safeguarding the privacy of personal consumer information was
approved in California in 2003. As more information is transmitted and stored digitally, the danger of
data breaches grows. The risks were made clear by well-publicized data breaches that occurred in
the late 20th and early 21st centuries. Thus, the development of cybersecurity as a whole is entwined
with the historical context of DLP software. Solutions to counter threats also developed and got more
complex over time. These applications might provide complete security throughout the data handling
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process by identifying, monitoring, and safeguarding data when it is in use, in motion, and at rest.
Thus, businesses of all sizes utilize DLP software as the cornerstone of their information security
procedures to protect their most precious assets. The development of DLP solutions from the early
days of data breaches to the current state of sophistication illustrates the constant innovation and
adaptation required to safeguard sensitive data in an increasingly digital society. In order to deal with
the uncertainty of data loss resulted from threats, we implemented fuzzy theory to get over all of
this vagueness. Thus, a relationship between components of data loss solution and threats in data
loss preservation is numerically studied in this article. This studied include potency and impotency of
data loss preventive measure against various sources. Additionally, the present paper also suggests
a way to evaluate a various data loss state on which a different threat can effectively attack and
among these, select the most appropriate one for DLP. The concept of Hasse diagram and complex
linear Diophantine partial order fuzzy relation assist as a basis for this novel approach. Thus, other
comparable approaches that are already in literature review are matched with suggested strategies.
As fuzzy set theory has not yet recognized the complex relations in CLDFSs, thus a supremacy and
authenticity are initiated by numeric problems. From now on, there is an effective possibility for
prospective studies to be conducted in order to investigate these structures.

The continued sections of paper are ordered as follow:

The paper is based on certain established concept in fuzzy set theory, which are reconsidered in
section 2. In section 3, novel innovations for CLDFRs are illustrated, such as relation between two
CLDFSs resulting from CPs, CLDFRs types and proof of various theorems. Section 4 present a Hasse
diagram along with some helpful definitions and properties to elaborate complex linear Diophantine
partial order fuzzy set and relation. In section 5, the application of CLDFSs and CLDFRs is submitted.
The effectiveness of various threats on any state of data loss in DLP is explored. Section 6 compares
the suggested structures with the one that are currently in use in the field of fuzzy set theory. Lastly,
conclusion finishes the paper.

2. Preliminaries
This section put forward some fundamental interpretations along with examples, comprising
fuzzy set (FS), complex fuzzy set (CFS), intuitionistic fuzzy set (IFS), complex intuitionistic fuzzy set
(CIFS), complex Pythagorean fuzzy set (CPyFS), complex g-rung orthopair fuzzy set (Cq-ROFS) and
linear Diophantine fuzzy set (LDFS).
Definition 1. [1] A set 77 on a universal set y, known as fuzzy set is of the following form
T = {(a,im(a)):a € )(}
Whereas a mapping Mt: y — [0,1] assigns a membership grade to each element of a set.
Example 1. The set 7y = {(ax, 0.62), (bx' O), (CX, 0.91), (dx' 0.19), (eX, 0.56)} represents FS.
Definition 2. [7] A set 77 on a universal set y, known as complex fuzzy set is of the following form
T = {(a, im(c(a)): aeE )(}
Whereas a mapping Mc: x = Z 3 0 < |Z| < 1 assigns a membership grade to each element of a
set and Z is a complex number.
Furthermore, the complex fuzzy set can also be illustrated in the form of
7 = {(a, A(a)e®7):q € x}
Whereas mappings A: y — [0,1] and P: y — [0,1] refer to an amplitude term and phase term
from which a membership grade is assigned to each element of set respectively.
(a)(' 0.326i2n(0.43))’ (b)(' 0. 7161'27'[(0.24-))’ (C)(' 0.5981'271'(0.13)),}

Example 2. The set 1 :{ (d,, 0.29¢2704D), (¢, 0.97¢i27(033)
x V- ) x Y

represents CFS.
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Definition 3. [12] A set T; on a universal set y, known as intuitionistic fuzzy set is of the following

form
7 = {(a, M(a), R(a)):a € 1}

Whereas mappings Mty — [0,1] and Jt: y — [0,1] assign membership and non-membership

grades to each element of a set respectively. Moreover,
M(a) + N(a) € [0,1].
(a,,0.42,0.21), (b, 0.65,0.33), (cy, 0.72,0.11),
(d,,0.18,0.55), (e,, 0.86,0.023)

Definition 4. [14] A set T¢ on a universal set y, known as complex intuitionistic fuzzy set is of the

following form

Example 3. The set 7y = { } represents IFS.

Tr = {(a, E)J?(C(a),ill(c(a)): ae X}
Whereas mappings Mc: ¥y 2 Z and JNe:x > Z 3 0 < |Z| <1 assign membership and non-
membership grades to each element of a set and Z is a complex number. Moreover,
[Wic(a)|+]Nc(a)| € [0,1].
Furthermore, the complex intuitionistic fuzzy set can also be illustrated in the form of
T = {(a,c/l(rf)mt(a)eiz%?(“)”,u‘l(rf )m(a)ei”f“(“)") ‘q € )(}

Whereas mappings Agy: ¥ = [0,1], Ag: x = [0,1],Py: x = [0,1] and Py: x — [0,1] refer to
amplitude terms of membership and non-membership grades and phase terms of membership and
non-membership grades from which a membership and non-membership grades are assigned to
each element of set respectively. Moreover,

("q(rf)im + ‘A(rf )ER) € [0,1] and (P(rf)im + :P(rf)‘ﬁ) € [0,1]
Example 4. The set
(a)(’ 0_45261'211'(0.312)77:, 0.271€i2n(0'521)), (b){' 0.565€i2n(0'462), 0.32361'21'[(0.113))'

T = (C)(' 0.6328i2n(0'721), 0.311€i2n(0'213)), (d)(' 0.128€i2n(0'299), 0.815€i2n(0'328)),

(e)(' 0.486€i2n(0'235), 0.198€i2n(0'655))
represents CIFS.

Definition 5. [26] A set 77 on a universal set y, known as complex Pythagorean fuzzy set is of the
following form

7 = {(a, Mc(a), Ne(a)):a € x}

Whereas mappings Mic:y = Z and Nc:xy = Z 3 0 < |Z| £ 1 assigns a membership and non-
membership to each element of set respectively and Z is a complex number.

Given that,

M (@) + |(Re(@)|? € [0,1]
Furthermore, the complex Pythagorean fuzzy set can also be illustrated in the form of
_ 2P ym(@)w 2P ym(a)T |
T = {(a,a‘l(rf)gm(a)e s ,cﬂ(ff)gz(a)e s ).a € )(}

Whereas mappings Ag: ¥ = [0,1], Ag: x = [0,1],Py: ¥ = [0,1] and Py: y — [0,1] refer to
amplitude terms of membership and non-membership and phase terms of membership and non-
membership from which a membership and non-membership grades are assigned to each element
of set respectively. Moreover,

(Aepm) + (Apm) €100 (Piyym) +(Pem) € 01
Example 5. The set
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(a)(’ 0_75281'27'[(0.512)71', O.471€i2n(0'671)), (b){’ 0.575€i2n(0'462), O.623€i2n(0'713)),
T = (cy,0.652e2m(0771),0.461¢12m(0341)),

(d)(' 0'128ei27t(0.799)’ 0.9158i2n(0.398))’ (e)(' 0.586€i2n(0'835), 0.498€i2n(0'255))
represents CIFS.

Definition 6. [34] A set T¢ on a universal set y, known as complex g-Rung orthopair fuzzy set is of
the following form

7 = {(a, Mc(a), Ne(a)):a € x}

Whereas mappings Wic:xy = Z and Nec:y = Z 30 < |Z]| <1 assigh membership and non-
membership to each element of set respectively and Z is a complex number.

Given that,

|Mc(a)|* + [(Nc(a)|* € [0,1], where k = 3,4,5, ...
Furthermore, the complex g-rung orthopair fuzzy set can also be illustrated in the form of
iy = {(a’"q(rf)m?(a)ew?(rfmm)n'"q(rf)ﬂ?(a)eﬂ?(rf )m(a)n) ‘a € X}

Whereas mappings Ag: ¥ = [0,1], Ag: x = [0,1], Py: ¥ = [0,1] and Py: y — [0,1] refer to
amplitude terms of membership and non-membership and phase terms of membership and non-
membership from which a membership and non-membership grades are assigned to each element
of set respectively. Moreover,

(A, )m) + (A, )" € [0,1] and (P )m)* + (P, ) )" € [0,1], where k = 34,5, ..

Example 6. The set

(a)(’ 0.8526i2n(0.812)n, 0.571€i2n(0'679)), (b)(' 0.775€i2n(0'862), 0.723ei2n(0.713))'

Tf — (CX’ 0_7926i277:(0.871), O.861€i2n(0'541)), (d)(' 0.828€i2”(0'993), 0.965€i2n(0'498)),

(e)(' O.996€i2n(0'835), 0.678€i2”(0'555))
represents CQROFS where k = 9.

Definition 7. [41] A set T on a universal set y, known as linear Diophantine fuzzy set is of the

following form
7 = (& (M, (@), Ry, ) (@), (A B)):a € x }

Whereas mappings M: y = [0,1] and Jt: y — [0,1] assign membership and non-membership
grades and A, B € [0,1] assign reference parameters to each element of a set respectively. Given
that

(QIEITI(a) + %SR(a)) € [0,1] and (A + B) € [0,1]

Example 7. The set

Tf =

(2 (0.712,0421),(0522,0.281)) , (b, (0.635,0.373), (0.622,0.261)),, (¢, (0.862,0.311), (0.442,0.521)),

(dX, (0.928,0.545), (0.452,0.421)) , (ex, (0.286,0.723), (0.482,0.291))
represents LDFS.

3. Complex Linear Diophantine Fuzzy Sets & Relations

This section put forward definition of complex linear Diophantine fuzzy set and some new ideas
related to the cartesian product of two CLDFSs, complex linear Diophantine fuzzy relation and its
types. A suitable example is provided for every definition. Additionally, some intriguing outcomes for
CLDFRs have also been established.

Definition 8. A set T; on a universal set y, known as complex linear Diophantine fuzzy set is of the
following form
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( . \
(a, c;l(‘tf)é]j?(a)e ( o () u‘l(.[f)m(a)e < (7 ) n ))

)

Tf = 1 r
i2(P m i2| P T
k ((cﬂ(rf)me O Al g () ),:a x|

Whereas mapping Aq: ¥ = [0,1], Agx:x = [0,1], Pay: x = [0,1] and Pgy: x — [0,1] refer to
amplitude terms of membership and non-membership and phase terms of membership and non-
membership from which a membership and non-membership grades are assigned to each element
of set respectively and C/Z(Tf Yo c/l(rf)ﬂg ,?(Tf )2 P(Tf)% € [0,1] refer to amplitude and phase terms
of reference parameters such that

(A y+ Ay )8) € [01], (0% yaA (e )m(@ + A A, )m(@) € [0,1] and

(?(rf)ﬂ + P(e, )%) € [0,1], (j)(Tf)QI?(Tf)EUt(a) + P(Tf)%?(Tf)m(a)> € [0,1]
Example 8. The set
((a){, (0.521¢27(0692), 0_47zei2n(0.317)),> <bx' (0.717¢27(©511), 0.52161'211’(0.612))’) \L

(0.523ei2”(0'433), 0_347ei2n(0.329)) (0_646ei2n(0.363)’ 0_32561‘211(0.413))
Tf = ' .
! L (cx, (0.648¢12m(0-709) 0.331312”(0-471))'> J

(0_3693i2n’(0-401), 0_573ei2n(0.395))
represents CLDFS.
Definition 9. Let
| o[
(@7 L \n@ ))
(a, Uq(-;f)gm(a)e Clep)o (Tf)m(a)e (e )

Tr = 3 > and

<(u‘l(rf)arei2@(ff o, Az )asem(%f ﬁs)ﬂ) 1 €X)

)

J

lZ(ﬁP( ) (b))TL’

2| P b) |
b, c’q(vf)im(b)e ,c/l(vf)m(b)e ((Vf)m ) '

Vf=<

g

i2(P m i2| P b4
k ((vﬂ(w)me b A g s )ub x )

be two CLDFSs in a wuniversal set y,then their cartesian product is given as
Tf XVf

( i2<?(1_ v )sm(a‘b)>” i2<fP(T - )m(a,b)>n
(arb)r dq(ffof)ﬂJ’e(a;b)e rr 'CA(foVf)ER(aib)e = )]

"

<dq(‘rf xvf)‘l[’ ei2<?(Tf XVf)QI)n’ c'q(‘rf xvf)SBei2<?(Tf xvﬂ%)")

\ :aETf,bEVf )
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A
(Tf xvf)

(@ b) = min {cﬂ(rf)ﬂn(a);cﬂ(vf)ﬂn(b)}

min {% ¢, o (@), Py o ()}
Afey vy, b) = max { Ay y0(@), AG (D)} Prey o ma,b) =
max {?(Tf)m(a), P(vf)m(b)} and
Aley vy = MR {A Yo Ay ach P ey xvpyu = MIR{P o o Al

Az, xvp)p = MAX {cﬂ(ff )as»d‘l(vf)%}, P(zpxvy)s = max {?(Tf ) P (v, )%}-

Definition 10. The complex linear Diophantine fuzzy relation is a subset of the cartesian product
of any two CLDFSs, R © T X Vf, where 74 and vy are CLDFSs and R denotes the CLDFR.

Example 10. The cartesian product of two CLDFSs

Tf=

Vf:

Tf XVf:{

(b, (0.317¢%2m(0:211) 0 .42 1ei2ﬂ(0-212>),>
< )

((a, (0.321ei2m(0292) () 37212m(0.217)) \
(0_123ei2ﬂ(0-233), 0_34_7ei2n'(0.229)) ’

(0.346ei2”(0-333), 0_3158i27t(0.213))
¢, (0.348¢12m(0:209) ( 331i2m(0:371)),
L( (0.369¢27(0:301) () 373i2m(0:345)) >
( (1,(0.313¢i27(0:323) (0 435¢27(0381))
( (0.296ei2”(°-357),O.374ei2”(0-329)) >,
m, (0.404¢127(0-332) (0, 29712m(0340)y)
< (0_24461'271(0-353),0_607ei2n(0.359)) )

J
\

)

»Plapxvpym(@b) =

> and

~~

n, (0.242127(0349) ( 367¢i2m(0-492))
\ (()_33731'271(0-287)’ 0_3996i27r(0.395)) )

((an), (0.242¢270292), 0,372 127(04

(6., (024267270210, 0,421 127004

The CLDFR R among the CLDFSs 7 and vy is

( ((a, 1), (0.313e27(0292) () 435¢i27(0381)) ((,123¢127(0233), 0_374ei2n(0.329))) )

((a, m), (0.321e27(0292) (0 372¢12m(0:3340)) (( 123¢i27(0233), 0_607ei2n(0.359))) ’

((b, 1), (0.313e%27(0211) (0 435¢127(0381)) (0 296127(0333), 0_374ei2n(0.329))) ’
((b’ m), (0_317ei2n(0.211), 0.42 1€i2ﬂ(0'340)), (0_24481'277:(0.333)’ 0_60761'211'(0.359))) oy

((c, 1), (0.313¢27(0209) (0 435i2m(0-381)) (0 296¢27(0301), 0_374ei2n(0.345)))
((C, m), (0.348¢127(0209) ( 33112m(0371)) (().244i27(0301) ( (7¢i27m(0.359))
L ((c, n), (0.242¢127(0209) () 367¢127(0492) (0,337¢127(0:287) (0,399¢i27(0:395))) |

92)) (0.123¢127(0.233), 0_39961‘211(0.395))) ’

92))' (0_337ei2n(0.287)’ 0.399ei2”(0'395))) ’

-

)
)
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( ((a, m), (0'321ei2n(0.292)’ 0.37Zei2"(0'3340)), (0.123ei2n(0.233)’ 0.607ei2"(0'359))) ’\

((b, ), (0.313¢27(0211) ( 435¢127(0.381)) (0.296ei2"(°'333), 0_374ei2n(0.329))) '
((b,n), (0.2427270211),0.421727(0492)), (0.337¢127(0287), 0,399 127(0399)) ),
((C’ m), (0.348e127(0:209) () 331¢i2m(0371)), (0.244ei2”(0'3°1), 0_607ei2n(0.359))) ’
((C n), (0. 242¢12m(0:209) 367ei2n(0.492)) (0. 337,12m(0.287) 3996i2n(0.395))) )

~—

Def/n/t/on 11. Let Ty be an CLDFS in a universal set y and R be an CLDFR on Tr. Then

Vi.

Vii.

viii.

Xi.

Xii.

If (a,a) € R,Va € Tz, then R isreferred to as a CLD reflexive fuzzy relation (CLD-reflexive-
FR) on 7.

If (a,a) € R, Va € Tf, then R is referred to as a CLD irreflexive fuzzy relation (CLD-
irreflexive-FR) on 7 .

If (a,b) € R = (b,a) ER, Va,b € Tf, then R is referred to as a CLD symmetric fuzzy
relation (CLD-symmetric-FR) on ;.

If (a,b) €R and (b,a) ER=>a=D>b, Va,b €14, then R is referred to as a CLD
antisymmetric fuzzy relation (CLD-antisymmetric-FR) on 7 .

If (ha) ER=> (a=b &)R,Va, b€ 5, then R is referred to as a CLD asymmetric fuzzy
relation (CLD-asymmetric-FR) on ¢ .

If (a,b) € R or (b,a) €R, Va,b € 1y, then R is referred to as a CLD complete fuzzy
relation (CLD-complete-FR) on 7y .

If (a,b) € R and (b,c) ER = (a,c) € R, Va,b,c € 1y, then R is referred to as a CLD
transitive fuzzy relation (CLD-transitive-FR) on 7y .

If R is CLD-reflexive-FR, CLD-symmetric-FR and CLD-transitive-FR on Tr , then R is referred
to as a CLD equivalence fuzzy relation (CLD-equivalence-FR) on 7y .

If R is CLD-reflexive-FR and CLD-transitive-FR on Tr, then R is referred to as a CLD preorder
fuzzy relation (CLD- preorder-FR) on 7y .

If R is CLD-irreflexive-FR and CLD-transitive-FR on Tr, then R is referred to as a CLD strict
order fuzzy relation (CLD- strict order-FR) on 7.

If R is CLD-preorder-FR and CLD-antisymmetric-FR on Tr, then R is referred to as a CLD
partial order fuzzy relation (CLD- partial order-FR) on 7.

If R is CLD-partial order-FR and CLD-complete-FR on Tz, then R is referred to as a CLD
linear order fuzzy relation (CLD- linear order-FR) on .

Example 11. For an CLDFS

( a,(0_3213””(0-292),0_3726i2n(0.217))’ N
( (0.123¢i27(0:233) (. 347127(0.229)) )
b, (0.317¢127(0211) (0 421¢i2m(0212)y,
( (0_34691'2”(0-333)’0_315ei2n(0.213)) )
¢, (0.348¢12m(0:209) () 331¢i27m(0:371)y)
< (0_36991'2”(0-301),0_3739i2n(0.345)) >

Tf:

the cartesian product of 75 X 7y is
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( (a' Cl), (0.321ei2n’(0.292), 0.3728i2n’(0.217))' (0.1236i2n(0.233)’ 0_347ei2n’(0.229)) ’W

(a’ b), (0.31781'21'[(0.211)’ 0.42 1ei21'[(0.217))’ (0.123ei27r(0.233)’ 0.347ei2n(0.229)) )
i21(0.209) i21m(0.371) i2m(0.233) i2(0.345)

(a,¢), (0.321e ,0.372e ), (0.123e ,0.373e ),

(b, b), (0.31781'271'(0.211), 0.42 1ei277:(0.212))' (0.346ei2n(0.333)’ 0.3156i2n’(0.213))

7 X1 =1 ((b,a), (0.3172m(0211) 0.421¢2m(0-217), (0.123¢27(0:233), 0,347¢127m(0229)

v~

)

(b, C), (0.31781'271'(0.209)’ 0.421ei2n'(0.371))' (0.346ei2n(0.301)' 0.3736i2n’(0.345)) )
(C, C), (0.348€i2n(0'209), 0.33181'21'[(0.371))’ (0.3698i2”(0'301), 0.373ei2n(0.345)) )
(C, a)’ (0.321€i2”(0'209), 0.3723i2”(0'371)), (0.123ei27r(0.233)’ 0.373ei2n(0.345)) )

N~ o~ N N~ —

)
)
)
).
)
)
)
)

\ ((C' b), (0.317¢127(0209) ( 421¢127(0.371)) (0_346ei2n(0.301), 0_373ei2n(0.345))) )

Then,
i.  The CLD-equivalence-FR R, on 1y is as follow

(((a, a), (0_321ei2n(0.292)’ 0.37Zei2n(0.217))’ (0.123ei2n’(0.233)’ 0_347ei2n(0.229))) \
((a ¢), (0.321e27(0209) () 372127(0371)) (( 123¢127(0.233) ( 373¢127(0. 345)))’
Ry =1 ((b,), (0.317e27021D, 0.421¢27212)), (0.346¢127(0339),0,315¢127(0219)) ) 4
((c ¢), (0.348¢127(0209) () 331127(0371)) (( 369¢127(0:30D) () 373¢127(0. 345)))’

((c @), (0.321¢27(0209) ( 37261270371 (q, 123¢12m(0233) 9 373i2m(0. 345))) )
ii. The CLD-preorder-FR R, on Ty is as follow
((a a) (0 32161211'(0 292) 0. 37261211'(0 217)) (0 12361211'(0 233) 0. 3476127'[(0 229))) 'W

((b @), (0.317¢127(0211) ( 421127(0217) (. 123¢i2m(0233) ( 347 pi2m(0. 229))),
4
((b b), (0.317¢27(0211) ( 421127(0212)y (. 346¢i27(0333) () 315,0i2m(0. 213))),

((c ¢), (0.348e127(0:209) () 331¢i2(0371)y (( 369¢127(0301) () 373i2m(0. 345))) )
iii. The CLD-strict order-FR R on Tz is as follow
((b, a)’ (0.31781'211'(0.211)’ 0.421ei2n’(0.217))’ (0.1236i2n’(0.233)’ 0.34761'271'(0.229)) ]

5 ((C’ a): (O.321€i2”(0'209), 0_37281'271(0.371))’ (0.1236i2”(0'233), 0_373ei2n(0.345))

((C b) (0 317eLZ7T(0 209) ,0. 42161271'(0 371)) (O 34661271'(0 301) 0. 37361271'(0 34—5))
iv.  The CLD-partial order-FR R, on Ty is as follow
((a a) (0 3216127'[(0 292) 0. 3726121'[(0 217)) (0 1236127r(0 233) ,0. 347eLZ7I(0 229)) ,\

((b a) (0 31791211'(0 .211) 042191211'(0 217)) (0 12391211(0 233) ,0. 34761211(0 229))
R, =+ ((b b) (0 3176127'[(0 211) 0421612n(0 212)) (0 346612n(0 333) 0. 3156127t(0 213))

)

)
),
)
)

((C C) (0 34891211'(0 .209) 0. 33191211'(0 371)) (0 36961271'(0 301) 0. 37361211(0 345)) )

\ ((c, @), (0.321e27(0209) ( 372,127(0.371)) (().123¢i27(0:233), 0_373ezzn(0.34s))) )
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v.  The CLD-linear order-FR Rs on Ty is as follow
f((a, a)’ (0.321€i2”(0'292), 0.3723i2”(0'217)), (0.123ei27r(0.233)’ 0.347ei2n(0.229)) ,W

((b, @), (0.317¢27(0211) ( 421¢127(0.217)) ((.123¢i27(0:233), 0.347ei2”(0'229))§ '
((b, ), (0317770211, 0.421727(0212)), (0.346¢127(°339),0.315¢127(0219)) ),
((c,0), (03486270209, 0,331 27(037D), (0.369¢127(301), 0,373 127(0:349)) ), >
((C, @), (0.321127(0209) ( 372¢12(0.371)) (0_12381'271(0.233)' 0_373ei2n(0.345))) '

\ ((C, b), (0'317ei2n(0.209)’ 0_421ei2n(0.371))’ (0.346ei2"(0'301), 0_373ei2n(0.345))) )

Definition 12. The converse relation R¢ for CLDFR R is defined as,
R¢ = {(b,a) : (a,b) € R}
Example 12. The converse relation R for CLDFR
( ((a’ m)’ (0.321ei2n'(0.292)’ 0.372€i2n(0'3340)), (0.123ei2n'(0.233)’ 0.607€i2n(0'359))) ’\

((b, ), (0.313¢27(0211) ( 435,127(0.381)) (0.296ei2"(°'333), 0_374ei2n(0.329))) '
R = ((b, n)’ (0.242€i2n(0'211), 0.421ei2n(0.492))’ (0.337ei2n'(0.287)’ 0.39961'271'(0.395))) )

~—

((C, m), (0.348€i2n(0'209), 0_33181'277:(0.371)), (0.244_ei21'[(0.301), 0.607€i2n(0'359))

),
L ((c, n), (0.242¢127(0:209) () 367¢i2m(0-492)) () 337i2m(0.287) 0_39961'21:(0.395))) )
Such that R is a CLDFR between CLDFSs
((a, (0.321ei27(0292) () 37212m(0-217))
( (0_12331'2”(0-233),0_347ei2n(0.229)) >'
b, (0.317¢2m(0-211) | 421¢12m(0-212))
=< ( (0_346ei2”(0'333),0.315€i2”(0'213))

> > and
<c, (0.348¢127(0209), 0.331ei2ﬂ(0-371)),>
L

(0_36991'27'5(0-301), 0_373ei2n(0.345))
( (1,(0.313¢127(0:323) () 435¢12m(0381)),
( (0_29631'27'[(0-357)’0_374ei2n(0.329))
m, (0_404ei2”(0-332), 0_297ei2n(0.340)),
< < (0-244ei2”(°'353),O.6O7ei2”(0-359)) )
n, (0.242127(0349) ( 367¢i2m(0-492))
L( (0.337¢127(0-287) (9 399i2m(0:395)) >J
( ((m, a), (0.321ei2m(0292) ( 372¢i2m(03340)) (()123¢i2m(0233), 0_607ei2n(o.359))) )

((l, b), (0.313¢27(0211) ( 435,127(0.381)) () 296¢i27(0:333), 0_374ei2n(0.329))) ,

RE = X ((Tl, b), (0.24zei2n’(0.211), 0.4_21ei27r(0.492))' (0.337ei2n(0.287)’ 0.39981'271'(0.395))) )
((m, o), (O.348ei2”(0'209), 0.33lei2”(0'371)), (0_244ei2n(0.301)’ 0_607ei2n(0.359))) ,

\ ((n, ¢), (0.242¢127(0209) ( 367,12m(0492)) (0_337ei2n(0.287), O.399ei2”(0'395))) )

The CLD-equivalence-FRs generate the concept of CLD-equivalence classes, which are described
as follows.

J
\
Vr = , 7 is given as,

~—
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Definition 13. Let R is an CLD-equivalence-FR, then CLDF-equivalence class of a modulo R is

defined as, R[a] = {b|(b,a) € R}.
Example 13. Let

is an CLD-equivalence-FR on an CLDFS

(0.123¢127(0233) () 347¢12m(0:229))
T = (0.346ei2”(0'333),O.315€i2"(0'213))

(c, (0.348¢i2m(0:209) () 331¢i2n(0371))
\

(0.369¢12m(0:301) () 37312m(0345))

Then CLDF-equivalence class of
i. amodulo R is given as

Rla] = J

r<a’ (0.321ei2n(0.292)’ 0.3726i2n(0.217))’> 3\

<b, (0_317ei2n(0.211), 0_421ei27t(0.212)),>

f((a, @), (0.321e127(0292) () 372¢127(0217)) (. 123¢127(0233) () 347¢127(0:229))) )
((a, ¢), (0.321e27(0209 () 372¢12m(0371)) (0 123¢127(0:233) ( 373¢27(0.345))
R o= ((b, b), (0.317ei27(0211) ( 421¢i27(0212)) ((.346¢127(0333) ( 315¢i2m(0213)y

((c, ¢), (0.348e2m(0209) 331 2m(0-371)) (0.369¢127(0301), 0,373¢12m(0.345)y ),
\ ((c, @), (0.321127(0209) ( 37212m(0.371)) (0_12361'271(0.233)’ 0_373ei2n(0.345))) )

)

)
),
)
)

v~

~~

).

((a, (0_321ei2n(0.292)'0_37281'271(0.217))' \
< (0_12391'2”(0-233)’0_34_7ei27r(0.229)) ):

|

¢, (0.348¢12m(0209) ( 337 i2m(0.371)y
L( (0.369¢2m(0301), 0,373 12m(0-345)) ) J

ii. bmodulo R is given as

R[b] =

_ {(b, (0_317ei2n’(0.211)' 0_421ei2n(0.212))’>}

iii. c¢modulo R is given as

(0.346¢12m(0:333) () 315¢12m(0213))

a, (0_321ei2n(0.292)’ 0.3 726i2n(0.217))’
— ( (0.1238i2ﬂ(0-233)’0_34781'271(0.229)) ).

Rlc] =

<C, (0.348€i2n(0'209), 0_3316i2n’(0.371))’>

(0.369¢27(0:301) 0 373¢i27(0345))

Definition 14. Let R be an CLDFR on an CLDFS 7, then CLD-composite-FR R o R is defined as,

V (a,b) € Rand (b,c) E R = (a,c) ERR,Va,b,c € yx.
Example 14. Let R, and R, be two CLDFR’s such that

((a, b), (0_317ei2n(0.211)’ 0_421ei2n(0.217))’ (0_12381'271(0.233)’ 0_347ei2n(0.229))) ,

:]_21 — ((b, a), (0.317ei2n'(0.211)’ 0.4_21ei2n'(0.217))’ (0.12361'271'(0.233)' 0.34781'271'(0.229))) )
((C; b)’ (0.317ei2n(0.209)’ O.4‘21€i2”(0'371)), (0.34‘6€i2n(0'301), 0.37361'271'(0.34—5)))

and
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(((a' C), (0_32181'27'[(0.209)’ O.372€i2n(0'371)), (0.123€i2ﬂ(0'233), 0.3736i2n’(0.345))) '\
((c, o), (0.3486i2n(0.209)’ 0.331ei2"(0'371)), (0.36gei2n(0.301)’ 0_373ei2n(0.345))) ’

'
((b, ), (0.317ei2n(0.211)’ 0.42 161’211(0.217))’ (0.123ei2n(0.233)’ 0_347ei2n(0.229))) ’

L ((c, b), (0.317e12m(0:209 (,421¢27(0371)) (0.346¢12m(0-301), 0.373ei2”(°-345))) J
((a,(0.321ei27(0292) ( 372¢i2m(0.217)) \
( (0_12331'2”(0-233),0_347ei27t(0.229)) >'
b, (0_317ei2n(0.211), 0_421ei2n(0.212))’

( (0.346127(0333) (.315¢2r(0213)) )
¢, (0.348¢12m(0209) () 331 12m(0-371)y
k( (0_3693i27f(0-301),0_3736i2n(0.345)) >)

Then the CLD-composite-FR R, o R, is given as,

f((a, a), (0.321ei2”(°'292), 0.37Zei2n(0.217))’ (0.123ei2n’(0.233)‘ 0_347ei2n(0.229))) '\
RioR, = ! ((b, ¢), (0.317¢127(0209) () 421127(0371), (0_346ei2n(0.301), 0_373ei2n(0.345))) ’

((c, @), (0.321e127(0209) ( 377127(0.371)) (0.123ei2n(0.233)’ 0_373ei2n(0.345))) J

Theorem 1. An CLDFR R is an CLD-symmetric-FR on an CLDFS 7, if f R = R°.
Proof. Assume that R = R€, then
(a,b) €R = (b,a) € R¢ = (b,a) € R.
Thus, R is an CLD-symmetric-FR on an CLDFS Tr .
Conversely, suppose that R is an CLD-symmetric-FR on an CLDFS T, then
(a,b) € R = (b,a) € R.
However, (b,a) € R¢ = R = RC.
Theorem 2. An CLDFR R is an CLD-transitive-FR on an CLDFS 7, if f R e R € R.
Proof. Assume that R is an CLD-transitive-FR on an CLDFS 5 .
Let (a,c) ER R,
Then, by definition of CLD-transitive-FR,
(a,b) e Rand (b,c) ER=>(a,c) ER=>R-RCR.
Conversely assume that R e R € R, then
For (a,b) € Rand (b,c) ER = (a,c) ER-R S R = (a,c) € R.
Thus, R is an CLD-transitive-FR on an CLDFS Tr.
Theorem 3. Suppose R is an CLD-equivalence-FR on an CLDFS 7, then R o R = R.
Proof. Assume that (a,b) € R,
Then by definition of CLD-symmetric-FR,
(b,a) € R.
Now, by using the definition of CLD-transitive-FR,
(a,a) € R.
However, by the definition of CLD-composite-FR,
(a,a) ER - R.
Thus, RS RoR (1)
Conversely, assume that (a,b) E R o R, thendc € U 3 (a,c) € Rand (c,b) € R.
However, it is given that R is an CLD-equivalence-FR on CLDFS T¢, SO R is also an CLD-transitive-
FR. Therefore, (a,b) ER >R R CS R (2)

on CLDFS 7, = 4

v
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Thus, by (1) and (2),

RoR=R

Theorem 4. Suppose R is an CLD-partial order-FR on an CLDFS Tr, then the converse relation
R€ of R is also an CLD-partial order-FR on an CLDFS ;.

Proof. In order to prove the assertion, it is sufficient to show that the converse of a complex linear
Diophantine partial order fuzzy relation R¢ satisfies the three properties of complex linear
Diophantine partial order fuzzy relation.

By using the properties of CLD-partial order-FR R, we prove the statement.

i. Itis given that R is an CLD-reflexive-FR. Therefore, for any a € U, (a,a) € R = (a,a) €
RE. Thus, RE is an CLD-reflexive-FR.

ii. Assume that (a,a) € R¢and (b,a) € RS, then, (a,b) € R and (b, a) € R. However, R is
an CLD-antisymmetric-FR. Therefore, (a, b) = (b, a). Thus, R€ is an CLD-antisymmetric-
FR.

ii. Suppose that (a,b) € R and (b, c) € RS, then, (c,b) € R and (b,a) € R. However, it is
given that R is an CLD-transitive-FR. Therefore, (c,a) € R = (a,c) € R¢. Thus, R¢ is an
CLD-transitive-FR.

From i, ii and iii, the converse relation R¢ of an CLD-partial order-FR R is proved to be an CLD-
partial order-FR too.

Theorem 5. Suppose R is an CLD-equivalence-FR on an CLDFS 1, then (a,b) € R, iff R[a] =
R[b].

Proof. Assume that (a,b) € R andc € R[a] = (c,a) € R.

Now, by using the fact that an CLD-equivalence-FR is also an CLD-transitive-FR, so (¢,b) € R =
c € R[b].

Thus, R[a] € R[b] (3)

As (a,b) € R, by using the fact that an CLD-equivalence-FR is also an CLD-symmetric-FR, so
(b,a) € R.

Additionally, assume that ¢ € R[b] = (¢, b) € R.

Now, again by using the fact that an CLD-equivalence-FR is also an CLD-transitive-FR, so

(c,a) ER = c € R[a]
Thus, R[a] 2 R[b] (4)
Therefore, from (3) and (4)
R[a] = R[b]

Conversely, assume that R[a] = R[b], c € R[a] and ¢ € R[b] = (c,b) € R and (c,a) € R.

Again, by using the fact that an CLD-equivalence-FR is also an CLD-symmetric-FR, so (c,a) € R =
(a,c) € R.

Now, by definition of CLD-transitive-FR,

(a,c) € Rand (c,b) € R = (a,b) € R.

Hence proved.

4. Hasse Diagram for CLD-Partial Order-FRs:

In this segment, we define the Hasse diagram for CLD-partial order-FR. In order to illustrate the
CLD-partial order-FR framework, the Hasse diagram is essential. This diagram is a graphical tool that
simplifies the understanding of complex relationships in such frameworks. In a Hasse diagram,
elements of partially ordered set are represented by points (vertices), and the ordering relation
between the element is represented by connecting line segment (edges). In constructing a Hasse
diagram, certain rules are discussed below:
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The elements are organized from lower to higher ranks. In any pair, the first element is
smaller than the second. For instance, in (a, b), a is smaller and is placed lower than b in
the diagram.

A self-relation is not represented by a line. Instead, its existence is understood without
explicit representation.

Unlike other diagrams, the Hasse diagram doesn’t use arrows. The arrangement of
element in relation to each other indicates their order, removing the need for directional
indicators.

Unnecessary lines are omitted in the diagram. For instance, when considering the element
(a, b) and their transitive relationship with (a, ¢) only two lines are drawn: one from a to
b and another from a to c. This approach makes indirect relationship easier to understand
and simplifies the diagram.

Example 15. Consider CLDFS

Tf=

((a,(0.321e127(0292) ( 372¢12m(0-217)) \

( (0_12331'2”(0-233),0_34_7ei2n'(0.229)) >
b, (0.317ei2”(0-211), 0.42 181'271'(0.212)),

( (0.346ei2”(0'333),0_3159i2”(0-213)) >
c, (0.348ei2”(0'209), 0.33lei2n(0.371)),

( (0.369¢i27(0:301) ( 373¢i2(0.345)) >
l (0_3133i2ﬂ(0-323)’ 0.43 5€i27t(0.381)),

\ < (0_29661'2”(0-357),0_374ei27t(0.329)) > )

*in a universal set y.

)
)
)

Then the cartesian product 7y X 7y is given as

Tf X Tf=<

(((a, ), (0_321ei2n(0.292)’ 0.37Zei2”(0'217)), (0.123ei27t(0.233)’ 0_347ei2n(0.229))) )
(Cl, b), (0.317ei2n’(0.211)’ 0.42 1ei27t(0.217))’ (0.123ei2n’(0.233)’ 0.347ei2rt(0.229))) ,

(a’ C), (0'32161'271'(0.209)’ 0.372€i2ﬂ(0'371)), (0.123€i2n(0'233), 0.373€i2ﬂ(0'345))) )

/N

(a’ l), (0'31361'271'(0.292)’ 0.435€i2ﬂ(0'381)), (0.123€i2n(0'233), 0.374€i2ﬂ(0'329))) ,
(b, Cl), (0_317ei2n(0.211)’ 0.42 1ei27t(0.217))’ (0.123ei2n(0.233)’ 0.347ei2n(0.229))) ,

(b, b), (0.317ei2n’(0.211)’ 0.42 1ei27t(0.212))’ (0.346€i2n(0'333), 0.315ei2rt(0.213))) ,
(b, C), (0_317ei2n(0.209)’ 0_42181'271'(0.371))’ (0.346€i2n(0'301), 0.373ei2n'(0.34-5)) ,

)

(b, l), (0'31361'271'(0.211)’ 0.435€i2ﬂ(0'381)), (0.296€i2n(0'333), 0.374€i2ﬂ(0'329)))
\
(C, a)’ (0'32161'271'(0.209)’ 0.372€i2ﬂ(0'371)), (0.123€i2n(0'233), 0.373€i2ﬂ(0'345))) )

(C, b), (0_317ei2n(0.209), 0.42 1ei2n’(0.371))’ (03466 i27‘[(0.301), 0.373€i2”(0'345)) ,

A~ TN TN

(C, C), (0_34861'271'(0.209), 0.33 1ei27'[(0.371)), (0.369€i2n(0'301), 0_37361'271'(0.345)) )
(C, l), (0_313ei2n’(0.209), 0_43561'271'(0.381))’ (0.296€i2n(0'301), 0_37461'271'(0.345)) )

)

(l, b), (0.31361'271'(0.211), 0.435€i2ﬂ(0'381)), (0.296€i2n(0'333), 0.374ei2ﬂ:(0.329))

)

AN NN TN

(l, C), (0_313ei2n’(0.209), 0_43561'271'(0.381))’ (0.296€i2n(0'301), 0_37461'271'(0.345)) )
(l, l), (03 1361'271'(0.323)’ 0.4356i2n’(0.381))’ (0.296ei2”(0'357), 0_37461'271'(0.329)

(l, a)’ (0.31361'271'(0.292), 0.435€i2ﬂ(0'381)), (0.12381'27'[(0.233), 0.374€i2n(0'329)))
\ )

/N

J
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A CLD-partial order-FR R is
f((a’ a)’ (0.32161'21'[(0.292)’ 0.3723i2”(0'217)), (0.123ei27r(0.233)' 0.347ei2n(0.229))) ,W

((a, b), (0.317ei27(021D) ( 421¢i27(0217)) (. 123¢127(0233) ( 347¢i2m(0229))
((b, b), (0.317ei2"(0'211), 0.421ei2n(0.212))’ (0.346ei2n(0.333)' 0_3156i2n(0.213))) ,
((c, ¢), (0.348¢127(0:209) () 331127(0371)) () 369¢i27(0.301), 0_373ei2n(0.345))) '
((l, @), (0.313¢127(0292) ( 435¢127(0.381)) (). 123¢i2m(0:233), 0_374ei2n(0.329))) ' (
((l, b), (0'313ei2n(0.211)’ 0.4356i2n(0.381)), (0.296ei2"(0'333), 0_374ei2n(0.329))) ,

((l, ¢), (0.313¢127(0:209) () 435127(0381)) (( 29gei2m(0.301), 0_374ei2n(0.345))) ’

\ ((l, D, (0.313ei2n(0.323),0.43Sei2n(0.381)), (0.296ei2n’(0.357)’0.374ei2n(0.329))) )

The Hasse Diagram for this relation is given in Figure 1.
Definition 15. Suppose a Hasse diagram that illustrate an CLD-partial order-FR, then the following
element is referred to as:
i.  The maximal element if there is no other element greater than it. e.g., an element a is
maximal if there is no other element b such thata < b and a # b.
ii.  The minimal element if there is no other element smaller than it. e.g., an element a is
minimal if there is no other element b such that b < a and a # b.
iii.  The maximum or the greatest element if all element associated with it are smaller than it.
e.g., an element a is maximum if for every element b such that b < a.
iv.  The minimum or the least element if all element associated with it are greater than it.
e.g., an element a is minimum if for every element b such that a < b.
In Figure 1, the elements b and ¢ are maximum elements, while [ is the minimal as well as
minimum element. The only maximal element is b.

b

l

Fig. 1. Hasse Diagram for R in example 15
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Definition 16. If W represent any non-empty subset of an CLD-partial order-FS 77, then an
elementr € R C 75 X Ty is referred to as:
i. Upperbound of Wif (b,a) € R, forallb € W.
i. Lower bound of Wif (a,b) € R, forallb € W.
iii.  Supremum of W if itis a least upper bound of W.
iv.  Infimum of W if it is a greatest lower bound of W.

5. Application
This section presents the implementation of proposed work in application by applying examined
relations and their various forms in data loss prevention technique of cybersecurity.

5.1 Data Loss Prevention (DLP)

A data breach or leak occurs when private, protected, or sensitive information is disclosed to an
untrustworthy source. Insider trading by employees or former employees of a company, hacker
assaults, or unintended data loss or exposure are all potential causes of data breaches.

Unauthorized duplication or transmission of data without affecting the original material is known
as information leakage, also known as exfiltration. In certain cases, breaches result in the complete
loss of data, such as ransomware attacks, in which hackers encrypt data to prevent the owner from
accessing it.

Thus, a vital part of contemporary information security measures is data loss prevention (DLP),
which protects sensitive data from illegal access, disclosure, or exfiltration. Through the
implementation of policies and controls that regulate the usage, storage, and transport of private
information inside an organization, DLP solutions are intended to identify, track, and avert data
breaches.

Data loss prevention (DLP) is a critical component of cybersecurity solutions that protect sensitive
data from unauthorized access, leakage, or theft. DLP solutions help businesses monitor, identify,
and prevent the unauthorized transmission or theft of sensitive data across networks, endpoints, and
cloud-based settings.

5.1.1 Security techniques of DLP
DLP uses following data security techniques:

i. Sensitive Data Discovery: DLP systems may scan and detect sensitive data on an
organization's network, such as personally identifiable information (Pll), financial data,
intellectual property, and private documents. Organizations may improve their data
landscape and security measures by categorizing and marking sensitive data.

ii.  Data Surveillance and Inspection: DLP technologies continually monitor data in motion, at
rest, and in use to keep track of how sensitive information is obtained, shared, and utilized
inside the business. This surveillance allows for finding any illegal acts or legislative
infractions in actual time.

iii.  Policy Enforcement: DLP systems let firms develop and implement data security rules
based on regulatory requirements, industry standards, and internal guidelines. Policies
might include guidelines for data management, access restrictions, encryption, and data
protection to help prevent data loss issues.

iv.  Data Encryption: DLP systems frequently feature encrypted features to safeguard
sensitive data in route and at rest. Encryption guarantees that data, even if intercepted or
stolen, remains unintelligible and safe, lowering the risk of hacking and illegal access.
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v.  Endpoint Guarding: DLP systems may be installed on endpoints such as laptops, desktop
computers, and mobile devices to monitor and regulate data transfers and prevent data
leakage via removable storage devices, email attachments, or cloud services. Endpoint
DLP protects data on gadgets used by employees both within and outside of the
company's intranet.

vi.  Cloud Data Protection: As cloud services become more widely used, DLP systems'
capabilities expand to secure data stored in cloud settings. Organizations may use DLP
policies to govern data access, sharing, and storage in cloud services, limiting the risk of
information and compliance breaches.

vii.  User Activity Monitoring: DLP systems monitor user behavior and activities involving
highly confidential information access & usage. Organizations can detect dangers from
insiders, illegal data transfers, and hazardous behaviors that might result in data loss
events by monitoring how people interact with material.

Thus, through the use of content discovery, encryption, access restrictions, and monitoring
systems, DLP solutions let businesses track sensitive data consumption, proactively detect sensitive
information, and stop it from being disclosed without authorization.

In addition, the proliferation of mobile devices, cloud computing, and remote work settings,
among other technological advancements, has increased the attack surface for possible data
breaches. DLP systems have therefore evolved to meet these new difficulties by adding protection
to networks, endpoints, and cloud environments, guaranteeing thorough data security on a variety
of platforms.

Adopting strong DLP protections is essential for organizations, as the volume of data collected
and exchanged across digital platforms has increased and so has the danger of data breaches. By
taking these precautions, firms may preserve consumer trust, safeguard intellectual property, comply
with legal obligations, and lessen the financial and reputational harm caused by data loss events.

Furthermore, by implementing these strategies and technologies, organizations can effectively
secure data in any state, ensuring that sensitive information is protected against interception,
unauthorized access, and data breaches. For instance, following securing data states are classified
below:

i.  Securing data in motion: A Data in motion in DLP is secured by utilizing network
monitoring techniques, such as deep packet inspection and secure gateways, to identify
and stop unwanted data transfers, as well as by encrypting data during transmission using
technologies like TLS and VPNs.

ii.  Securing data at rest: Implementing access controls to guarantee that only authorized
users can access sensitive information and encrypting stored data to prevent
unauthorized access are two ways to secure data at rest in DLP. In order to identify and
address possible security risks, observe and audit data access on a regular basis.

iii.  Securingdatainuse:Inorderto secure data used in DLP, use contextual policies to enforce
access controls and stop unauthorized use or leakage, as well as real-time monitoring and
analysis of data exchanges.

iv.  Securing endpoints: Utilize device control mechanisms to limit the usage of external
storage devices and unauthorized programs, and deploy endpoint protection software to
monitor and regulate data activities in order to secure endpoints in DLP.

v. Data identification: Utilizing continuous learning approaches to adjust to changing data
patterns and risks, secure data identification via machine learning in DLP involves training
models with a variety of datasets to improve recognition accuracy of sensitive
information.
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Vi.

Data detection: Secure data loss detection in DLP can be achieved by utilizing machine
learning algorithms for precise anomaly detection, carefully crafting policies to track data
movement, and identifying sensitive information using sophisticated content inspection
methods.

5.1.2 Threats

Although, data loss prevention system has their own set of threats and challenges, even though
they are crucial for safeguarding sensitive data. So thus, for DLP to be implemented successfully, it is
essential to comprehend these threats (Table 1).

The following are the main threats related with DLP:

Table 1

Insider Leaks: Disgruntled workers, former workers who still have access credentials to
private networks, and business partners are examples of insider risks. They may be driven
by retaliation, money, or information that has economic value.

Extrusion by attackers: Sensitive data is kept by organizations on a variety of gadgets,
including desktop computers, servers, thumb drives, laptops, and portable hard drives.
Any of these devices might be inadvertently misplaced by organization personnel or
physically taken by an attacker, leading to a breach.

Unintended Disclosure: Many data breaches result from the inadvertent disclosure of
private information rather than from an assault. IT workers may inadvertently expose a
critical internal server to the Internet, or employees may access sensitive data and store
it in an insecure place.

Details of threats

Causes Notation Membership Non-Membership Parameter A Parameter B

Insider leakage T, 0.721e"2m(0643) 0.292¢12m(0287) 0.753i2m(0633) 0,246 12m(0-329)
Extrusion by attackers T, 0.425¢%2m(0:311) 0.526¢127(0-412) 0.546¢12m(0.523) 0.415¢12m(0-413)
Unintended disclosure T, 0.278¢12m(0409) 0.861¢2m(0:376) 0.319¢27(050D) ) 673i27(0445)

5.1.3 Component of Data Loss Solution or States of securing data loss
Following main data loss states are supported by DLP systems to secure organizations from data
breaches or leakage (Table 2):

i.
ii.
iii.
iv.
V.
vi.

Table 2

Securing data in motion (transferred data)
Securing endpoints

Securing data-at-rest

Securing data in use

Data identification

Data leak detection

Data loss states

Securing states Notation Membership Non-Membership Parameter A Parameter B

Securing data in motion Sim 0.812¢127(0-222) 0.261¢127(0:532) 0.625¢2m(0357) () 27412m(0.566)
Securing endpoints S, 0.441e127m(0-334) 0.357¢127(0:349) 0.512¢12m(0:353) 0.407¢2m(0-459)
Securing data at rest S, 0.5426i2n(0'549) 0_364ei27'[(0.492) 0_437ei27'[(0.264—) 0_521ei2n(0.573)
Securing data in use Sy 0.642¢12m(0:359) 0.327¢2m(0-492) 0.671e2m(0257)  (332¢i2m(0.595)
Data identification S; 0.347¢12m(0.649) 0.417¢i2m(0.491) 0.327¢i2m(0587) () 599ei2m(0.345)
Data leak detection Sy 0.243¢2m(0-319) 0.558¢2m(0482) 0415270457 .518¢12m(0:397)
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5.2 Calculations
In this section, the relationships are examined, focusing on efficacy and inefficacy of each
cybersecurity technique in preventing data loss. We perform the following analysis. The following
two CLDFSs v¢ and 7y, illustrating the set of components of data loss solution and the set of threads
are carried out, respectively.

( Sm' (0.812€i2n(0'222), O.261€i2n(0'532)), Ser (0.44‘1€i2n(0'334), 0.35781'277:(0.34-9))' \

( (0.625€i2n(0'357), 0.274ei2n'(0.566)) )’( (0.51zei2n(0.353)' 0.407ei2n'(0.4-59)) )'
Sr' (0_54281'217:(0.549), O.364‘€i2n(0'492)), Sur (0.64‘2€i2n(0'359), 0.327ei2n'(0.4-92))’

( (0.43781'217:(0.264)’ 0.521ei2n'(0.573)) )’ ( (0.671€i2n(0'257), 0.3326i2rr(0.595))

(Sii (0.347ei27t(0.649)’ 0.41781'21'[(0.491))’) <Sd' (0.243ei2n’(0.319)’ 0.558€i2n(0'482)),>

v~

Vf:

L\ (0.327¢27(0587) .599¢i2m(0-345)) (0.415¢12m(0457) (51820397 | )
((Tp (0.82 1¢12m(0.643) 0_29281'211(0.287)),) (Tz. (0.5258i2n(0.311)’ 0.326ei2n(0.412))’ 3
(0.753ei2”(°'633),O.246ei2”(0'329)) ’ (0_546ei2n(0.523)’0.41561'211(0.413))
Tr = i Ts, (0_3786i21r(0.409),0_46181'271(0.376)),
< (0.319¢27(0:501) () 673¢i2m(0.445)) ) )
Thus, we utilize the cartesian product to determine the effectiveness of specific threats against
specific components of data loss solution. Which is given below:

f((sm' Tl)J (072 1ei277:(0.222), 0_29281'277:(0.532)), (062 581'271'(0.357), 0.246€i2n(0'566))) ’\

(Sm: TZ)! (0.4258i2n(0.222)’ 0.326€i2n(0'217)), (0.5126i2n(0.353)‘ 0.41 Sei2n(0.566))) )
(SmJ T3), (02 78€i2n(0'222), O.461€i2n(0'532)), (03 1981'271'(0.357)' 0.673€i2n(0'566))) )

(So, Ty), (04411270339 ( 357¢i2m(0.349)) (( 512¢i27(0353) () 407¢i2m(0459Y)
(S,,T,), (0.425¢2m(031D) () 357¢i2m(0412)) (0,512 2m(0353) ( 415¢i2m(0459)))
(S,, Ts), (0.278e27(0339) () 461¢i27(0376)) (0.319¢27(0:353) ( 673¢i2m(0459)))
(S,, Ty, (0.542127(0549) ( 364i2m(0:492)) (( 437¢i27(0264) () 521¢27(0573)))
(S,,T,), (0.425¢27(031D) () 364¢i2m(0492)) (() 437¢27(0264) ( 521i2m(0.573)))
(S, Ts), (0.27827(0:409) ( 461¢i2m(0:492)) (( 319¢i27(0264) () 673¢2m(0573)))

Vf X Tf = < ) , , .
(Sur Tl)' (0.64261211'(0.359)’ 0.32761271'(0.412))' (0.67161271'(0.257)’ 0.33281271'(0.595))

(Sw T3), (0.278€i2n(0'359), 0.4616i2n(0'492)), (0_3198i27r(0.257)’ 0_67381'27'[(0.595)) ,
(Si: T1), (0_34781'211(0.643)’ 0_417ei2n(0.491))’ (0_327ei2n(0.587)’ 0_59gei2n(0.345)) ,
(Sir TZ)J (0.347ei2n(0.311), 0.4_17ei27r(0.491))' (0_32781'27'[(0.523)’ 0_59981'27'[(0.413)) ,
(Si: T3), (0_243ei2n(0.319)’ 0_46lei2n(0.491))’ (0.3 19ei2”(°'5°1), 0_673ei2n(0.445)) ,
(S, T1), (0.243¢12m(0319) 0 558¢12m(0462)) (0.415¢12m(0457), 0,518¢!2m(0397)) ),

N N N N T NN N AN TN NN TN T/

)
)
)
)
)
)
)
(Su T2), (0.425¢12m(0311) 0,327¢12m(0492)) (0,546 12m(0257), 0.415ei2”(°-595>)) ,
)
)
)
)
)
)

(Sd! TZ)J (0.243€i2n(0'319), 0.558€i2n(0'482)), (0_4159i2n(0.457)’ 0.5 1881’27‘[(0.413)) )

/N

VS

\ (Sdl T3), (0.243ei2n(0.319)’ O.558€i2n(0'482)), (03 196i27'[(0.4—57)’ 0.673ei27t(0.4—45))) )

147



Spectrum of Operational Research
Volume 3, Issue 1 (2026) 128-152

The vf X T represents the relation between the set of components of data loss solution and the

@b (dq(‘ff va)iTﬁ(aﬂ b)eiz(y)(Tf va)M(a‘b))ﬂ' dq(‘lff xvp)R (a, b)eiZ(?(rf XVf)m(a’b))n) '

set of threats. For an ordered pair , its

(,,q(Tf -~ (Pl A, va)%eiz(?(rf xvf)%)“>
specifically illustrates how the first element affects or influences the second within the ordered pair.
Whereas the membership degree signifies the potency of security of data in different states against
certain threats to address a particular time-related risk. However, the non-membership degree
signifies the consequences related to threats over the securing data states. Moreover, the
parameters related to membership and non-membership degrees represent the requirements of
securing data states to be confronted over the penetration through threats to ensure data security.
Such as, ((Sy, Ty, (0.721e7(222),0,292¢27(0532), (0.625¢27(0357),0,246¢27(59)) ) being an ordered pair

illustrates that a data in motion can be secured more potently against the insider leakage risk. The
values of degrees are stated as: the value of membership degree clarifies that security potency of
data in motion against the exposure of data through insider leakage is 72.1% over the time span of
approximately one-fourth unit and the value of non-membership degree signifies that the possibility
of penetration of securing data in motion through insider leakage is 29.2% over the time span of
approximately half unit. whereas, the values of parameters represent that the security of data in
motion is required to be 62.5% in time span of approximately one-third to tackle the risk of insider
leakage whereas the parameter value of non-membership indicates that 24.6% risk can be tolerated
in time span of approximately half unit.

6. Comparative Analysis
This section compares intended CLDFR structure to current structures, such as CFRs, CIFRs,
CPyFRs, CqROFRs and LDFRs, with the aim of suggested framework stability authentication.

6.1 Comparison with FRs and CFRs:

In FRs, the focus is only on real-valued degree of membership, while in CFRs a real-imaginary
valued membership grades in term of amplitude and phase term are utilized concentrating on
relationship grades without any limitations. But in CLDFRs a real-imaginary valued membership grade
as well as non-membership grade along with parameters are introduced focusing on the ability to
evaluate any relationship’s both potency and impotency.

Moreover, in order to precisely model multivariable problems, the FRs and CFRs fail. So, the only
way to handle such problems is through CLDFRs.

Since CFR’s is the extended structure of FRs structure as discussed, so thus a thorough comparison
of CFR’s and CLDFRs is presented below.

By using CFR’s and considering the following two CFs vf and 7y, illustrating the set of components
of data loss solution and the set of threats respectively, we analyze the problem stated in section 4.2.
In order to simplify the computation process and finalize the comparative analysis certain
components of data loss solution and threats sources are excluded.

(Smr (O.812€i2n(0'222))), (ST’ (0.5426i2n(0.549)))'
Ve = {(Sur (0.642¢27(0359)) (S, (0.441¢i27(0330)Y) }
T = {(T1’ (0.821€i2n(0'643))), (TZ' (0.5256i2ﬂ(0.311)))}
The CFR R between vy and ¢
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(S T1), (0.72172700222)) ) (S, Ty), (0.425€27(0222)) ) )

((Se» Ty), (0.441ei2"<°-334))) ; ((Se, T,), (0.425ei2”<0-311>)) ,
(€S, Ty), (0.542€27©549)) (5, T,), (0.425€ 731D,

((Sw Ty, (0.64Zei2”(0‘359))) ) ((Su, T2), (0.4253i2”(°-311))) )

As observed from above, CFR R simply provide information regarding the membership grade.
That’s, because CFRs structure lacks any degree of non-membership, it only reveals the efficacy of
security of data in different states against certain threats to address a particular time-related risk and
hides the consequences related to threats over the securing data states. As a result, these structures
provide limited amount of information and have significant restrictions.

i
Il

6.2 Comparison with IFRs, CIFRs, PyFRs, and CPyFRs

As CLDFR, being a combination of real-imaginary valued membership degree, non-membership
degree along with parameters in terms of amplitude and phase term model uncertainty with a
structured, constraint-based approach. But, IFRs limited to real numbers, are restricted to handle
single-variable problems. As a result, they lack a capability to address the problems related to time
variations or those with phase transitions. Whereas, CIFRs structure deal with the real-imaginary
valued membership degree and non-membership degree having amplitude and phase term but they
are less effective due to the absence of parameters. Also, the sum of amplitude terms and phase
terms of membership degree and non-membership degree respectively, must lies in unit interval,
making CFRs restricted to limitations.

Furthermore, PyFRs and CPyFRs, also have some limitations regarding membership and non-
membership grades and are incapable of dealing with parameters. so, it becomes less effective to
handle problems more precisely.

Thus, an advantage of CLDFRs over CIFRs and CPyFRs lies in their structured approach having
parameters and negligence of restrictions related to degrees.

6.3 Comparison with LDFRs

The shortcoming of IFSs, PyFSs and g-ROFSs concerning membership and non-membership
grades, as well as their incapacity to manage parameterization, are addressed by LDFSs. LDFRs
broadens the analytical space by removing these limitations. By adding reference factor, LDFRs
improve on current approaches by enabling the free selection of membership and non-membership
grades. But LDFRs, in which the grades are limited to real valued, are unable to handle problems
involving phase terms or time span. Thus, CLDFRs, which covers the problems that include both real
and imaginary parts in term of amplitude and phase term, extend LDFRs by incorporating real-
imaginary valued membership, non-membership grades and parameters grades.

By using LDFRs and considering the following two CFs v¢ and ¢, illustrating the set of components
of data loss solution and the set of threats respectively, we analyze the problem stated in section 4.2.
In order to simplify the computation process and finalize the comparative analysis, certain
components of data loss solution and threats sources are excluded.

_ ((Sm,(0.812,0.261),\ (S, (0.441,0.357),\ (S, (0.542,0.364),\ (S, (0.642,0.327),
r= {( (0.625,0.274) )( (0.512,0.407) )( (0.437,0.521) )( (0.671,0.332) >}
_ ((T1,(0.821,0.292),\ (T3,(0.525,0.326),
= {( (0.753,0.246) )( (0.546,0.415) )}
The LDFR R between vy and ¢
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((Sm, T1), (0.721,0.292), (0.625,0.246)), ((S;, ), (0.425,0.326), (0.512,0.415)),
((S., Ty), (0.441,0.357), (0.512,0.407)), ((S,, T2), (0.425,0.357), (0.512,0.415)),
((S,, Ty, (0.542,0.364), (0.437,0.521)), ((S,, T2), (0.425,0.364), (0.437,0.521)),

((Sy, Ty), (0.642,0.327), (0.671,0.332)), ((Sy, T2), (0.425,0.327), (0.546,0.415)),

As shown above, LDFR focus only real-valued problems, simply providing information based on
real valued membership, non-membership grade and parameters. it only reveals the efficacy of
security of data in different states against certain threats to address risk without being related to
time and hides the consequences related to threats over the securing data states.

VfXTf =

7. Conclusion

In this paper, two new concepts are introduced: the cartesian product of two complex linear
Diophantine fuzzy sets CLDFSs and the complex linear Diophantine fuzzy relation (CLDFR).
Furthermore, the complex linear Diophantine equivalence fuzzy relation (CLD- equivalence-FR), CLD-
partial-FR, CLD- total order-FR, CLD- composite-FR and many other forms of CLDFRs are also defined.
Moreover, for the CLD- partial-FR and CLD- partial-FS, the Hasse diagram has been presented. In
addition, definitions of terms and ideas associated with Hasse diagram have also been provided. For
every definition, suitable examples are provided, and various results are demonstrated for different
types of CLDFRs. Furthermore, the suggested concepts are applied to examine the relation between
the components of data loss solution and risk related to threats. Through a contrast comparison with
different substitute mathematical methodologies, the section named as comparative analysis
demonstrate the superiority CLDFRs. Furthermore, it also summarizes the extensive framework of
CLDFRs as well as the shortcomings of earlier frameworks.
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