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In today's digital age, many operational decisions in businesses rely on data 
sources, enabling organizations to enhance productivity, make informed 
decisions, and gain competitive advantages. However, businesses also face 
data breaches involving sensitive information—such as financial records, 
intellectual property, and customer personal data—which may be 
compromised inadvertently. These threats can often be mitigated by 
implementing robust cybersecurity measures, such as Data Loss Prevention 
(DLP), to ensure proper monitoring and control of all organizational data, 
enforce policies without exceptions, and prevent unauthorized data transfers 
or rule violations. Despite these measures, uncertainties remain regarding the 
efficacy of identifying threats at various stages of data loss to mitigate their 
adverse effects through effective cybersecurity. To address this, this paper 
introduces Complex Linear Diophantine Fuzzy Relations (CLDFRs). For the 
first time in fuzzy set theory, we analysed the relationships between various 
threats and components of DLP-based data loss solutions. Additionally, we 
present the concept of Hasse diagrams for Complex Linear Diophantine Fuzzy 
Sets and Relations to examine different cybersecurity methods and 
procedures. This approach helps determine the most effective strategy based 
on Hasse diagram analysis. Furthermore, after applying specific constraints to 
the decision-making process, the optimal cybersecurity approach is selected. 
Finally, a comparative analysis demonstrates the advantages of the proposed 
methods.  
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1. Introduction 

Since many problems concerning with uncertainty and vagueness are unable to be handled 
efficiently by conventional set theory, which deals with crisp set and binary membership irrespective 
of whether an element is involved in a set or not.  By integrating doubts and inaccuracies relevant to 
information based on real-world situations and human deductive reasoning, thus Zadeh [1] 
presented the concept of fuzzy set theory in 1965 that renewed conventional set theory. In order to 
indicate the extent of element’s existence in a set, a partial membership is enabled by fuzzy set theory 
through which a gradual progression of a component’s existence in unit interval is illustrated. The 
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versatility of FS in expressing inaccuracy and unpredictability renders it a useful tool to characterize 
a complex system in which definite boundaries are difficult to identify or illusive. Furthermore, Klir 
[2] presented a definition for the idea of relation among crisp set through which only yes-and-no type 
problems can be solved. Since it deals with precise information so this theory of set fails to represent 
uncertainty. Thus, an idea of fuzzy relation (FRs), or relations for FSs was put forward by Mendal [3]. 
FRs can indicate the degree, effectiveness and extent of good relations among any two FSs instead 
of restricted to address only binary terms. A set of axioms for a comparatively basic form of FSs was 
provided by Goguen [4]. Zywica [5] utilized FSs to analyze uncertainties in medical. Uncertainty, 
gradualness and bipolarity via FRs were investigated by Dubis and Prade [6]. 

Furthermore, to address uncertainty and inaccuracy in complex structures, Ramot et al., [7] put 
forward the concept of Complex fuzzy set (CFSs) in 2002, in which a complex number are utilized to 
assign to membership degrees with real and imaginary parts known as amplitude term and phase 
term respectively along with its values lies in unit interval, are presented. Moreover, the concept of 
complex fuzzy relations (CFRs) through which a relation between two CFs is determined, was 
presented by Ramot et al., [7]. Yazdanbakhsh and Dick [8] investigated the CFs. Liu [9] introduced the 
use of distance measurement on CFs in decision-making applications. CFs was examined by Sobhi 
[10].  An application for CFs were put forward by Tamir et al., [11]. 

In some cases, it become uncertain to identify an extent of set being a member or non-member, 
thus an intuitionistic fuzzy set (IFS) as a situation-handling broadening of FS was introduced by 
Atanassov [12] in 1999. The values of membership and non-membership degrees must vary in unit 
interval respectively. Furthermore, the summation of membership and non-membership does not 
surpass the unit interval. The IFS become FS if the non-membership degree equals to zero. Burillo et 
al., [13] developed the invention of intuitionistic fuzzy relation (IFRs). Furthermore, Alkouri et al., [14] 
put forward a novel proposal of complex intuitionistic fuzzy set (CIFS) in 2012, in order to deal with 
complex structure relating with membership and non-membership of an element in a set. The IFSs 
was further developed by Rehman et al., [15]. From a dynamic viewpoint, IFSs was further reviewed 
by Yu et al., [16]. Moreover, the field of medicine [17], aggregation operator [18], pattern recognition 
[19] and decision making [20] has given more attention to IFSs. Complex relations were used by Nasir 
et al., [21], [22] to evaluate economic relationships. Some CIFS applications for Artificial Intelligence 
were put forward by Garg and Rani [23]. 

Moreover, under certain conditions, the limit which is permitted for the total of membership and 
non-membership degree exceeds boundary. Thus, a Pythagorean fuzzy set (PyFSs) was introduced by 
Yager [24], [25] assuring that totality of square of membership and non-membership does not 
surpass the unit interval. Furthermore, in order to deal with complex structures, Ullah et al., [26] 
came up with a proposal of complex Pythagorean fuzzy set (CPyFSs). A PyFSs was examined by Peng 
et al., [27]. Saikia et al., [28] presented an application in transportation problem based on advanced 
similarity measure in PyFSs. Khan et al., [29] expanded PyFSs. Pan et al., [30] put forward the 
quaternion model of PyFSs. Labassi et al., [31] introduced application in visualization technology via 
novel approach through CPyFSs. Akram et al., [32] presented optimization technique through CPyFSs 
for making decision. 

Sometimes, PyFSs fails as a totality of square goes beyond the limit, so thus Yager [33] in 2016 
suggested an idea of q-rung orthopair fuzzy set (q-ROFS) with a q-rung variable ensuring that totality 
of q-exponent of membership and non-memberships respectively must be within unit interval. 
Furthermore, Liu et al., [34] and Garg et al., [35] presented the proposal of complex q-rung orthopair 
fuzzy set (Cq-ROFS) through which a complex structures facing uncertainties will be handled.  The q-
ROFS was further investigated by Peng and Luo [36]. The first method for quantifying knowledge 
related to q-ROFS was put forward by Khan et al., [37].  Demir et al., [38] presented an extensive 
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approach for decision-making in service industry through q-ROFSs. Akram et al., [39] introduced 
innovative approach to decision-making using Cq-ROFSs. Javeed et al., [40] proposed some 
application of Cq-ROFSs in medical. 

Furthermore, an investigation was conducted in order to concern some limitations related to 
membership and non-membership mapping in FSs, IFSs, PyFSs and q-ROFSs models. Thus, in 2019 
Riaz and Hashmi [41] came up with an idea of linear Diophantine fuzzy set (LDFSs) in order to get 
around these restrictions by inserting reference parameters to IFS structure. By reducing the 
shortcomings of current approaches of other set, it was declared that LDFS structure enables 
unrestricted data determination in real-world situations. Additionally, LDFSs is demonstrated to be 
broader than FSs, IFSs, PyFSs and q-ROFSs through the arbitrary attribute of reference parameter. 
But in some cases, when it comes to resolve complex structure with C-valued membership degree, 
non-membership degrees and reference parameters respectively, Kamacı [42] came up with an 
extension of LDFSs as complex linear Diophantine fuzzy set (CLDFSs). CLDFSs appears with C-valued 
membership degree, non-membership degrees and reference parameters respectively. Ayub et al. 
[43], [44] put forward some linear Diophantine fuzzy relation (LDFRs) based novel approaches. Zia et 
al., [45] presented applications of CLDFSs in multi-attribute decision-making. Guan et al., [46] came 
up with an application of CLDFSs in engineering. 

This paper presents the idea of Cartesian product among two CLDFSs. Additionally, through the 
idea of CP of two CLDFSs, advanced invention of a complex linear Diophantine fuzzy relation CLDFR 
is summarized. Furthermore, various kinds of CLDFRs such as complex linear Diophantine equivalence 
fuzzy relation, complex linear Diophantine partial order fuzzy relation, complex linear Diophantine 
composite fuzzy relation, complex linear Diophantine total order fuzzy relation, complex linear 
Diophantine converse fuzzy relation and much more along with suitable examples, have also been 
discussed. Besides these, for CLDFRs certain results have been established. Furthermore, for complex 
linear Diophantine partial order fuzzy sets and relation, a concept of Hasse diagram have also been 
shown. Also, following concepts such as maximum element, minimum element, maximal element, 
minimal element, supremum, infimum, upper and lower bounds have been mentioned. In order to 
compare a current concept presented in this paper to previous structures, it follows that CLDFSs and 
CLDFRs are dominant over FSs, CFSs, IFSs, CIFSs, CPyFSs, CqROFSs and LDFSs. As, the relationship 
between CLDFSs examined by CLDFRs, consist of complex-valued membership degree, non-
membership degree and parameters. Furthermore, compared to other ideas, these conceptions are 
far more adept at handling uncertainty. They can handle data with multiple variables more precisely 
due to the presences of complex-valued membership degree, non-membership degree and 
parameters without any restriction to any limitation. 

Nowadays, Businesses handled considerably more data as they started to digitize their 
operations. While there are many benefits associated with this digital transition, like increased 
efficiency and connection, there are also new threats. Businesses began to recognize that breaches, 
both intentional and unintentional, may occur to their sensitive and important data, which included 
financial data, intellectual property, and personal information about consumers and staff. As 
cybertheft often appeared in media headlines, individuals and institutions started advocating for 
more stringent data protection regulations.  Around this same period, legal entities began to pay 
attention. For instance, the first law safeguarding the privacy of personal consumer information was 
approved in California in 2003. As more information is transmitted and stored digitally, the danger of 
data breaches grows. The risks were made clear by well-publicized data breaches that occurred in 
the late 20th and early 21st centuries. Thus, the development of cybersecurity as a whole is entwined 
with the historical context of DLP software. Solutions to counter threats also developed and got more 
complex over time. These applications might provide complete security throughout the data handling 
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process by identifying, monitoring, and safeguarding data when it is in use, in motion, and at rest. 
Thus, businesses of all sizes utilize DLP software as the cornerstone of their information security 
procedures to protect their most precious assets. The development of DLP solutions from the early 
days of data breaches to the current state of sophistication illustrates the constant innovation and 
adaptation required to safeguard sensitive data in an increasingly digital society. In order to deal with 
the uncertainty of data loss resulted from threats, we implemented fuzzy theory to get over all of 
this vagueness. Thus, a relationship between components of data loss solution and threats in data 
loss preservation is numerically studied in this article. This studied include potency and impotency of 
data loss preventive measure against various sources. Additionally, the present paper also suggests 
a way to evaluate a various data loss state on which a different threat can effectively attack and 
among these, select the most appropriate one for DLP. The concept of Hasse diagram and complex 
linear Diophantine partial order fuzzy relation assist as a basis for this novel approach. Thus, other 
comparable approaches that are already in literature review are matched with suggested strategies. 
As fuzzy set theory has not yet recognized the complex relations in CLDFSs, thus a supremacy and 
authenticity are initiated by numeric problems. From now on, there is an effective possibility for 
prospective studies to be conducted in order to investigate these structures. 

The continued sections of paper are ordered as follow: 
The paper is based on certain established concept in fuzzy set theory, which are reconsidered in 

section 2. In section 3, novel innovations for CLDFRs are illustrated, such as relation between two 
CLDFSs resulting from CPs, CLDFRs types and proof of various theorems. Section 4 present a Hasse 
diagram along with some helpful definitions and properties to elaborate complex linear Diophantine 
partial order fuzzy set and relation. In section 5, the application of CLDFSs and CLDFRs is submitted. 
The effectiveness of various threats on any state of data loss in DLP is explored. Section 6 compares 
the suggested structures with the one that are currently in use in the field of fuzzy set theory. Lastly, 
conclusion finishes the paper. 

 
2. Preliminaries 

This section put forward some fundamental interpretations along with examples, comprising 
fuzzy set (FS), complex fuzzy set (CFS), intuitionistic fuzzy set (IFS), complex intuitionistic fuzzy set 
(CIFS), complex Pythagorean fuzzy set (CPyFS), complex q-rung orthopair fuzzy set (Cq-ROFS) and 
linear Diophantine fuzzy set (LDFS). 

Definition 1. [1] A set 𝜏𝑓 on a universal set 𝜒, known as fuzzy set is of the following form 

𝜏𝑓 = {(𝑎,𝔐(𝑎)): 𝑎 ∈ 𝜒} 

Whereas a mapping 𝔐: 𝜒 → [0,1] assigns a membership grade to each element of a set. 

Example 1. The set 𝜏𝑓 = {(𝑎𝜒, 0.62), (𝑏𝜒, 0), (𝑐𝜒, 0.91), (𝑑𝜒, 0.19), (𝑒𝜒, 0.56)} represents FS. 

Definition 2. [7] A set 𝜏𝑓 on a universal set 𝜒, known as complex fuzzy set is of the following form  

𝜏𝑓 = {(𝑎,𝔐ℂ(𝑎)): 𝑎 ∈ 𝜒} 

Whereas a mapping 𝔐ℂ: 𝜒 → ℤ ∋ 0 ≤ |ℤ| ≤ 1 assigns a membership grade to each element of a 
set and ℤ is a complex number. 

Furthermore, the complex fuzzy set can also be illustrated in the form of 

𝜏𝑓 = {(𝑎,𝒜(𝑎)𝑒
𝑖2𝒫(𝑎)𝜋): 𝑎 ∈ 𝜒} 

Whereas mappings 𝒜:𝜒 → [0,1] and 𝒫: 𝜒 → [0,1] refer to an amplitude term and phase term 
from which a membership grade is assigned to each element of set respectively. 

Example 2. The set 𝜏𝑓 = {
(𝑎𝜒, 0.32𝑒

𝑖2𝜋(0.43)), (𝑏𝜒, 0. 71𝑒
𝑖2𝜋(0.24)), (𝑐𝜒, 0.59𝑒

𝑖2𝜋(0.13)),

(𝑑𝜒, 0.29𝑒
𝑖2𝜋(0.41)), (𝑒𝜒, 0.97𝑒

𝑖2𝜋(0.33))
} 

represents CFS. 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 128-152 

132 
 
 

Definition 3. [12] A set 𝜏𝑓 on a universal set 𝜒, known as intuitionistic fuzzy set is of the following 

form 
𝜏𝑓 = {(𝑎,𝔐(𝑎),𝔑(𝑎)): 𝑎 ∈ 𝜒} 

Whereas mappings 𝔐𝜒 → [0,1] and  𝔑: 𝜒 → [0,1] assign membership and non-membership 
grades to each element of a set respectively. Moreover, 

𝔐(𝑎) + 𝔑(𝑎) ∈ [0,1]. 

Example 3. The set 𝜏𝑓 = {
(𝑎𝜒, 0.42,0.21), (𝑏𝜒, 0.65,0.33), (𝑐𝜒, 0.72,0.11),

(𝑑𝜒, 0.18,0.55), (𝑒𝜒, 0.86,0.023)
} represents IFS. 

Definition 4. [14] A set 𝜏𝑓 on a universal set 𝜒, known as complex intuitionistic fuzzy set is of the 

following form 

𝜏𝑓 = {(𝑎,𝔐ℂ(𝑎),𝔑ℂ(𝑎)): 𝑎 ∈ 𝜒} 

Whereas mappings 𝔐ℂ: 𝜒 → ℤ and 𝔑ℂ: 𝜒 → ℤ ∋ 0 ≤ |ℤ| ≤ 1 assign membership and non-
membership grades to each element of a set and ℤ is a complex number. Moreover, 

|𝔐ℂ(𝑎)|+|𝔑ℂ(𝑎)| ∈ [0,1]. 
Furthermore, the complex intuitionistic fuzzy set can also be illustrated in the form of 

𝜏𝑓 = {(𝑎,𝒜(𝜏𝑓 )𝔐
(𝑎)𝑒𝑖2𝒫𝔐(𝑎)𝜋,𝒜(𝜏𝑓 )𝔑

(𝑎)𝑒𝑖2𝒫𝔑(𝑎)𝜋) : 𝑎 ∈ 𝜒} 

Whereas mappings 𝒜𝔐: 𝜒 → [0,1], 𝒜𝔑: 𝜒 → [0,1] , 𝒫𝔐: 𝜒 → [0,1]  and 𝒫𝔑: 𝜒 → [0,1] refer to 
amplitude terms of membership and non-membership grades and phase terms of membership and 
non-membership grades from which a membership and non-membership grades are assigned to 
each element of set respectively. Moreover, 

(𝒜(𝜏𝑓 )𝔐
+𝒜(𝜏𝑓 )𝔑

) ∈ [0,1] and (𝒫(𝜏𝑓 )𝔐 + 𝒫(𝜏𝑓 )𝔑) ∈ [0,1] 

Example 4. The set  

𝜏𝑓 = {

(𝑎𝜒, 0.452𝑒
𝑖2𝜋(0.312)𝜋, 0.271𝑒𝑖2𝜋(0.521)), (𝑏𝜒, 0.565𝑒

𝑖2𝜋(0.462), 0.323𝑒𝑖2𝜋(0.113)),

(𝑐𝜒, 0.632𝑒
𝑖2𝜋(0.721), 0.311𝑒𝑖2𝜋(0.213)), (𝑑𝜒, 0.128𝑒

𝑖2𝜋(0.299), 0.815𝑒𝑖2𝜋(0.328)),

(𝑒𝜒, 0.486𝑒
𝑖2𝜋(0.235), 0.198𝑒𝑖2𝜋(0.655))

} 

represents CIFS. 
Definition 5. [26] A set 𝜏𝑓 on a universal set 𝜒, known as complex Pythagorean fuzzy set is of the 

following form 

𝜏𝑓 = {(𝑎,𝔐ℂ(𝑎),𝔑ℂ(𝑎)): 𝑎 ∈ 𝜒} 

Whereas mappings 𝔐ℂ: 𝜒 → ℤ and 𝔑ℂ: 𝜒 → ℤ ∋ 0 ≤ |ℤ| ≤ 1 assigns a membership and non-
membership to each element of set respectively and ℤ is a complex number. 

Given that, 
|𝔐ℂ(𝑎)|

2 + |(𝔑ℂ(𝑎)|
2 ∈ [0,1] 

Furthermore, the complex Pythagorean fuzzy set can also be illustrated in the form of 

𝜏𝑓 = {(𝑎,𝒜(𝜏𝑓 )𝔐
(𝑎)𝑒

𝑖2𝒫(𝜏𝑓 )𝔐
(𝑎)𝜋

,𝒜(𝜏𝑓 )𝔑
(𝑎)𝑒

𝑖2𝒫(𝜏𝑓 )𝔑
(𝑎)𝜋

) : 𝑎 ∈ 𝜒} 

Whereas mappings 𝒜𝔐: 𝜒 → [0,1], 𝒜𝔑: 𝜒 → [0,1] , 𝒫𝔐: 𝜒 → [0,1] and  𝒫𝔑: 𝜒 → [0,1]  refer to 
amplitude terms of membership and non-membership and phase terms of membership and non-
membership from which a membership and non-membership grades are assigned to each element 
of set respectively. Moreover, 

(𝒜(𝜏𝑓 )𝔐
)
2

+ (𝒜(𝜏𝑓 )𝔑
)
2

∈ [0,1] an (𝒫(𝜏𝑓 )𝔐)
2

+ (𝒫(𝜏𝑓 )𝔑)
2

∈ [0,1] 

Example 5. The set  
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𝜏𝑓 = {

(𝑎𝜒, 0.752𝑒
𝑖2𝜋(0.512)𝜋, 0.471𝑒𝑖2𝜋(0.671)), (𝑏𝜒, 0.575𝑒

𝑖2𝜋(0.462), 0.623𝑒𝑖2𝜋(0.713)),

(𝑐𝜒, 0.652𝑒
𝑖2𝜋(0.771), 0.461𝑒𝑖2𝜋(0.341)),

(𝑑𝜒, 0.128𝑒
𝑖2𝜋(0.799), 0.915𝑒𝑖2𝜋(0.398)), (𝑒𝜒, 0.586𝑒

𝑖2𝜋(0.835), 0.498𝑒𝑖2𝜋(0.255))

} 

represents CIFS. 
Definition 6. [34] A set 𝜏𝑓 on a universal set 𝜒, known as complex q-Rung orthopair fuzzy set is of 

the following form 

𝜏𝑓 = {(𝑎,𝔐ℂ(𝑎),𝔑ℂ(𝑎)): 𝑎 ∈ 𝜒} 

Whereas mappings 𝔐ℂ: 𝜒 → ℤ and 𝔑ℂ: 𝜒 → ℤ ∋ 0 ≤ |ℤ| ≤ 1 assign membership and non-
membership to each element of set respectively and ℤ is a complex number. 

Given that, 
|𝔐ℂ(𝑎)|

𝑘 + |(𝔑ℂ(𝑎)|
𝑘 ∈ [0,1],  𝑤ℎ𝑒𝑟𝑒 𝑘 = 3,4,5, … 

Furthermore, the complex q-rung orthopair fuzzy set can also be illustrated in the form of 

𝜏𝑓 = {(𝑎,𝒜(𝜏𝑓 )𝔐
(𝑎)𝑒

𝑖2𝒫(𝜏𝑓 )𝔐
(𝑎)𝜋

,𝒜(𝜏𝑓 )𝔑
(𝑎)𝑒

𝑖2𝒫(𝜏𝑓 )𝔑
(𝑎)𝜋

) : 𝑎 ∈ 𝜒} 

Whereas mappings 𝒜𝔐: 𝜒 → [0,1], 𝒜𝔑: 𝜒 → [0,1] , 𝒫𝔐: 𝜒 → [0,1] and  𝒫𝔑: 𝜒 → [0,1]  refer to 
amplitude terms of membership and non-membership and phase terms of membership and non-
membership from which a membership and non-membership grades are assigned to each element 
of set respectively. Moreover, 

(𝒜(𝜏𝑓 )𝔐
)𝑘 + (𝒜(𝜏𝑓 )𝔑

)𝑘 ∈ [0,1] and (𝒫(𝜏𝑓 )𝔐)
𝑘 + (𝒫(𝜏𝑓 )𝔑)

𝑘 ∈ [0,1], 𝑤ℎ𝑒𝑟𝑒 𝑘 = 3,4,5, … 

Example 6. The set  

𝜏𝑓 = {

(𝑎𝜒, 0.852𝑒
𝑖2𝜋(0.812)𝜋, 0.571𝑒𝑖2𝜋(0.679)), (𝑏𝜒, 0.775𝑒

𝑖2𝜋(0.862), 0.723𝑒𝑖2𝜋(0.713)),

(𝑐𝜒, 0.792𝑒
𝑖2𝜋(0.871), 0.861𝑒𝑖2𝜋(0.541)), (𝑑𝜒, 0.828𝑒

𝑖2𝜋(0.993), 0.965𝑒𝑖2𝜋(0.498)),

(𝑒𝜒, 0.996𝑒
𝑖2𝜋(0.835), 0.678𝑒𝑖2𝜋(0.555))

} 

represents CqROFS where 𝑘 = 9. 
Definition 7. [41] A set 𝜏𝑓 on a universal set 𝜒, known as linear Diophantine fuzzy set is of the 

following form 
𝜏𝑓 = {(𝑎, ((𝔐(𝜏𝑓 )

(𝑎),𝔑(𝜏𝑓 )(𝑎)), (𝔄,𝔅)): 𝑎 ∈ 𝜒 } 

Whereas mappings 𝔐: 𝜒 → [0,1] and  𝔑: 𝜒 → [0,1] assign membership and non-membership 
grades and 𝔄,𝔅 ∈ [0,1] assign reference parameters to each element of a set respectively. Given 
that 

(𝔄𝔐(𝑎) + 𝔅𝔑(𝑎)) ∈ [0,1] and (𝔄 + 𝔅) ∈ [0,1] 

Example 7. The set  
𝜏𝑓 =

{
(𝑎𝜒, (0.712,0.421), (0.522,0.281)) , (𝑏𝜒, (0.635,0.373), (0.622,0.261)) , (𝑐𝜒, (0.862,0.311), (0.442,0.521)) ,

(𝑑𝜒, (0.928,0.545), (0.452,0.421)) , (𝑒𝜒, (0.286,0.723), (0.482,0.291))
} 

represents LDFS. 
 
3. Complex Linear Diophantine Fuzzy Sets & Relations 

This section put forward definition of complex linear Diophantine fuzzy set and some new ideas 
related to the cartesian product of two CLDFSs, complex linear Diophantine fuzzy relation and its 
types. A suitable example is provided for every definition. Additionally, some intriguing outcomes for 
CLDFRs have also been established.  

Definition 8.  A set 𝜏𝑓 on a universal set 𝜒, known as complex linear Diophantine fuzzy set is of the 

following form 



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 128-152 

134 
 
 

𝜏𝑓 =

{
 
 

 
 
(𝑎, (𝒜(𝜏𝑓 )𝔐

(𝑎)𝑒
𝑖2(𝒫

(𝜏𝑓 )𝔐
(𝑎))𝜋

,𝒜(𝜏𝑓 )𝔑
(𝑎)𝑒

𝑖2(𝒫
(𝜏𝑓 )𝔑

(𝑎))𝜋

) ,

((𝒜(𝜏𝑓 )𝔄
𝑒
𝑖2(𝒫

(𝜏𝑓 )𝔄
)𝜋
, 𝒜(𝜏𝑓 )𝔅

𝑒
𝑖2(𝒫

(𝜏𝑓 )𝔅
)𝜋
) , : 𝑎 ∈ 𝜒

}
 
 

 
 

 

Whereas mapping 𝒜𝔐: 𝜒 → [0,1], 𝒜𝔑: 𝜒 → [0,1] , 𝒫𝔐: 𝜒 → [0,1] and  𝒫𝔑: 𝜒 → [0,1]  refer to 
amplitude terms of membership and non-membership and phase terms of membership and non-
membership from which a membership and non-membership grades are assigned to each element 
of set respectively and 𝒜(𝜏𝑓 )𝔄

, 𝒜(𝜏𝑓 )𝔅
 , 𝒫(𝜏𝑓 )𝔄, 𝒫(𝜏𝑓 )𝔅 ∈ [0,1] refer to amplitude and phase terms 

of reference parameters such that 

(𝒜(𝜏𝑓 )𝔄
+𝒜(𝜏𝑓 )𝔅

) ∈ [0,1], (𝒜(𝜏𝑓 )𝔄
𝒜(𝜏𝑓 )𝔐

(𝑎) +𝒜(𝜏𝑓 )𝔅
𝒜(𝜏𝑓 )𝔑

(𝑎)) ∈ [0,1] and 

(𝒫(𝜏𝑓 )𝔄 + 𝒫(𝜏𝑓 )𝔅) ∈ [0,1], (𝒫(𝜏𝑓 )𝔄𝒫(𝜏𝑓 )𝔐(𝑎) + 𝒫(𝜏𝑓 )𝔅𝒫(𝜏𝑓 )𝔑(𝑎)) ∈ [0,1] 

Example 8. The set  

𝜏𝑓 =

{
 
 

 
 (
𝑎𝜒, (0.521𝑒

𝑖2𝜋(0.692), 0.472𝑒𝑖2𝜋(0.317)),

(0.523𝑒𝑖2𝜋(0.433), 0.347𝑒𝑖2𝜋(0.329))
) , (

𝑏𝜒, (0.717𝑒
𝑖2𝜋(0.511), 0.521𝑒𝑖2𝜋(0.612)),

(0.646𝑒𝑖2𝜋(0.363), 0.325𝑒𝑖2𝜋(0.413))
) ,

(
𝑐𝜒, (0.648𝑒

𝑖2𝜋(0.709), 0.331𝑒𝑖2𝜋(0.471)),

(0.369𝑒𝑖2𝜋(0.401), 0.573𝑒𝑖2𝜋(0.395))
)

}
 
 

 
 

 

represents CLDFS. 
Definition 9.  Let  

𝜏𝑓 =

{
 
 

 
 
(𝑎, (𝒜(𝜏𝑓 )𝔐

(𝑎)𝑒
𝑖2(𝒫

(𝜏𝑓 )𝔐
(𝑎))𝜋

, 𝒜(𝜏𝑓 )𝔑
(𝑎)𝑒

𝑖2(𝒫
(𝜏𝑓 )𝔑

(𝑎))𝜋

) ,

((𝒜(𝜏𝑓 )𝔄
𝑒
𝑖2(𝒫

(𝜏𝑓 )𝔄
)𝜋
, 𝒜(𝜏𝑓 )𝔅

𝑒
𝑖2(𝒫

(𝜏𝑓 )𝔅
)𝜋
) , : 𝑎 ∈ 𝜒)

}
 
 

 
 

 and 

 𝜈𝑓 =

{
 
 

 
 

(

 
 
 
 𝑏,(𝒜(𝜈𝑓)𝔐

(𝑏)𝑒
𝑖2(𝒫

(𝜈𝑓 )𝔐
(𝑏))𝜋

,𝒜(𝜈𝑓)𝔑
(𝑏)𝑒

𝑖2(𝒫
(𝜈𝑓 )𝔑

(𝑏))𝜋

) ,

((𝒜(𝜈𝑓)𝔄
𝑒
𝑖2(𝒫

(𝜈𝑓 )𝔄
)𝜋
, 𝒜(𝜈𝑓)𝔅

𝑒
𝑖2(𝒫

(𝜈𝑓 )𝔅
)𝜋
) , : 𝑏 ∈ 𝜒

)

 
 
 
 

}
 
 

 
 

  

be two CLDFSs in a universal set 𝜒, then their cartesian product is given as  
𝜏𝑓 × 𝜈𝑓

=

{
 
 
 

 
 
 

(

 
 
 
 (𝑎, 𝑏), (𝒜(𝜏𝑓 ×𝜈𝑓)𝔐

(𝑎, 𝑏)𝑒
𝑖2(𝒫

(𝜏𝑓 ×𝜈𝑓)𝔐
(𝑎,𝑏))𝜋

,𝒜(𝜏𝑓 ×𝜈𝑓)𝔑
(𝑎, 𝑏)𝑒

𝑖2(𝒫
(𝜏𝑓 ×𝜈𝑓)𝔑

(𝑎,𝑏))𝜋

) ,

(𝒜(𝜏𝑓 ×𝜈𝑓)𝔄
, 𝑒
𝑖2(𝒫

(𝜏𝑓 ×𝜈𝑓)𝔄
)𝜋
,𝒜(𝜏𝑓 ×𝜈𝑓)𝔅

𝑒
𝑖2(𝒫

(𝜏𝑓 ×𝜈𝑓)𝔅
)𝜋
)

)

 
 
 
 

: 𝑎 ∈ 𝜏𝑓 , 𝑏 ∈ 𝜈𝑓 }
 
 
 

 
 
 

 

Whereas 
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 𝒜
(𝜏𝑓 ×𝜈𝑓)𝔐

(𝑎, 𝑏) = min {𝒜(𝜏𝑓 )𝔐
(𝑎),𝒜(𝜈𝑓)𝔐

(𝑏)}, 𝒫(𝜏𝑓 ×𝜈𝑓)𝔐(𝑎, 𝑏) =

min {𝒫(𝜏𝑓 )𝔐(𝑎),𝒫(𝜈𝑓)𝔐(𝑏)}, 

𝒜(𝜏𝑓 ×𝜈𝑓)𝔑
(𝑎, 𝑏) = max {𝒜(𝜏𝑓 )𝔑

(𝑎),𝒜(𝜈𝑓)𝔑
(𝑏)} , 𝒫(𝜏𝑓 ×𝜈𝑓)𝔑(𝑎, 𝑏) =

max {𝒫(𝜏𝑓 )𝔑(𝑎), 𝒫(𝜈𝑓)𝔑(𝑏)} and 

𝒜(𝜏𝑓 ×𝜈𝑓)𝔄
= 𝑚𝑖𝑛 {𝒜(𝜏𝑓 )𝔄

,𝒜(𝜈𝑓)𝔄
}, 𝒫(𝜏𝑓 ×𝜈𝑓)𝔄 = 𝑚𝑖𝑛 {𝒫(𝜏𝑓 )𝔄,𝒜(𝜈𝑓)𝔄

}, 

 𝒜(𝜏𝑓 ×𝜈𝑓)𝔅
= 𝑚𝑎𝑥 {𝒜(𝜏𝑓 )𝔅

,𝒜(𝜈𝑓)𝔅
}, 𝒫(𝜏𝑓 ×𝜈𝑓)𝔅 = 𝑚𝑎𝑥 {𝒫(𝜏𝑓 )𝔅, 𝒫(𝜈𝑓 )𝔅}. 

Definition 10.  The complex linear Diophantine fuzzy relation is a subset of the cartesian product 
of any two CLDFSs, ℛ̅ ⊆ 𝜏𝑓 × 𝜈𝑓, where 𝜏𝑓 and 𝜈𝑓 are CLDFSs and ℛ̅ denotes the CLDFR. 

Example 10. The cartesian product of two CLDFSs  

𝜏𝑓 =

{
 
 
 

 
 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 
 

 
 
 

 and 

𝜈𝑓 =

{
 
 
 

 
 
 (

𝑙, (0.313𝑒𝑖2𝜋(0.323), 0.435𝑒𝑖2𝜋(0.381)),

(0.296𝑒𝑖2𝜋(0.357), 0.374𝑒𝑖2𝜋(0.329))
) ,

(
𝑚, (0.404𝑒𝑖2𝜋(0.332), 0.297𝑒𝑖2𝜋(0.340)),

(0.244𝑒𝑖2𝜋(0.353), 0.607𝑒𝑖2𝜋(0.359))
) ,

(
𝑛, (0.242𝑒𝑖2𝜋(0.349), 0.367𝑒𝑖2𝜋(0.492)),

(0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))
)
}
 
 
 

 
 
 

  

is  

𝜏𝑓 × 𝜈𝑓 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 ((𝑎, 𝑙), (0.313𝑒𝑖2𝜋(0.292), 0.435𝑒𝑖2𝜋(0.381)), (0.123𝑒𝑖2𝜋(0.233), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑎,𝑚), (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.3340)), (0.123𝑒𝑖2𝜋(0.233), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑎, 𝑛), (0.242𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.492)), (0.123𝑒𝑖2𝜋(0.233), 0.399𝑒𝑖2𝜋(0.395))) ,

((𝑏, 𝑙), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑏,𝑚), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.340)), (0.244𝑒𝑖2𝜋(0.333), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑏, 𝑛), (0.242𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) ,

((𝑐, 𝑙), (0.313𝑒𝑖2𝜋(0.209), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.301), 0.374𝑒𝑖2𝜋(0.345))) ,

((𝑐,𝑚), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.244𝑒𝑖2𝜋(0.301), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑐, 𝑛), (0.242𝑒𝑖2𝜋(0.209), 0.367𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

The CLDFR ℛ̅ among the CLDFSs 𝜏𝑓 and 𝜈𝑓 is 
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ℛ̅ =

{
 
 
 
 

 
 
 
  ((𝑎,𝑚), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.3340)), (0.123𝑒𝑖2𝜋(0.233), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑏, 𝑙), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑏, 𝑛), (0.242𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) ,

((𝑐,𝑚), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.244𝑒𝑖2𝜋(0.301), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑐, 𝑛), (0.242𝑒𝑖2𝜋(0.209), 0.367𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) }
 
 
 
 

 
 
 
 

 

Definition 11.  Let 𝜏𝑓 be an CLDFS in a universal set 𝜒 and ℛ̅ be an CLDFR on 𝜏𝑓. Then 

i. If (𝑎, 𝑎) ∈ ℛ̅, ∀𝑎 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD reflexive fuzzy relation (CLD-reflexive-

FR) on 𝜏𝑓 . 

ii. If (𝑎, 𝑎) ∉ ℛ̅, ∀𝑎 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD irreflexive fuzzy relation (CLD-

irreflexive-FR) on 𝜏𝑓 .  

iii. If (𝑎, 𝑏) ∈ ℛ̅ ⇒ (𝑏, 𝑎) ∈ ℛ̅, ∀𝑎, 𝑏 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD symmetric fuzzy 

relation (CLD-symmetric-FR) on 𝜏𝑓 .  

iv. If (𝑎, 𝑏) ∈ ℛ̅ and (𝑏, 𝑎) ∈ ℛ̅ ⇒ 𝑎 = 𝑏, ∀𝑎, 𝑏 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD 

antisymmetric fuzzy relation (CLD-antisymmetric-FR) on 𝜏𝑓 .  

v. If (𝑏, 𝑎) ∈ ℛ̅ ⇒ (𝑎 = 𝑏 ∉)ℛ̅, ∀𝑎, 𝑏 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD asymmetric fuzzy 

relation (CLD-asymmetric-FR) on 𝜏𝑓 .  

vi. If (𝑎, 𝑏) ∈ ℛ̅ or (𝑏, 𝑎) ∈ ℛ̅, ∀𝑎, 𝑏 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD complete fuzzy 

relation (CLD-complete-FR) on 𝜏𝑓 .  

vii. If (𝑎, 𝑏) ∈ ℛ̅ and (𝑏, 𝑐) ∈ ℛ̅ ⇒ (𝑎, 𝑐) ∈ ℛ̅, ∀𝑎, 𝑏, 𝑐 ∈ 𝜏𝑓, then ℛ̅ is referred to as a CLD 

transitive fuzzy relation (CLD-transitive-FR) on 𝜏𝑓 .  

viii. If ℛ̅ is CLD-reflexive-FR, CLD-symmetric-FR and CLD-transitive-FR on 𝜏𝑓 , then ℛ̅ is referred 

to as a CLD equivalence fuzzy relation (CLD-equivalence-FR) on 𝜏𝑓 . 

ix. If ℛ̅ is CLD-reflexive-FR and CLD-transitive-FR on 𝜏𝑓, then ℛ̅ is referred to as a CLD preorder 

fuzzy relation (CLD- preorder-FR) on 𝜏𝑓 . 

x. If ℛ̅ is CLD-irreflexive-FR and CLD-transitive-FR on 𝜏𝑓, then ℛ̅ is referred to as a CLD strict 

order fuzzy relation (CLD- strict order-FR) on 𝜏𝑓. 

xi. If ℛ̅ is CLD-preorder-FR and CLD-antisymmetric-FR on 𝜏𝑓, then ℛ̅ is referred to as a CLD 

partial order fuzzy relation (CLD- partial order-FR) on 𝜏𝑓. 

xii. If ℛ̅ is CLD-partial order-FR and CLD-complete-FR on 𝜏𝑓, then ℛ̅ is referred to as a CLD 

linear order fuzzy relation (CLD- linear order-FR) on 𝜏𝑓. 

Example 11. For an CLDFS 

𝜏𝑓 =

{
 
 
 

 
 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 
 

 
 
 

 

the cartesian product of 𝜏𝑓 × 𝜏𝑓 is  
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𝜏𝑓 × 𝜏𝑓 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑐), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑐), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑏), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Then,  
i. The CLD-equivalence-FR ℛ̅1on 𝜏𝑓 is as follow 

ℛ̅1 =

{
 
 
 
 

 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑐), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) }
 
 
 
 

 
 
 
 

  

ii. The CLD-preorder-FR ℛ̅2 on 𝜏𝑓 is as follow 

ℛ̅2 =

{
  
 

  
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) }
  
 

  
 

 

iii. The CLD-strict order-FR ℛ̅3 on 𝜏𝑓 is as follow 

ℛ̅3=

{
 
 

 
 ((𝑏, 𝑎), (0.317𝑒

𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑏), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) }
 
 

 
 

 

iv. The CLD-partial order-FR ℛ̅4 on 𝜏𝑓 is as follow 

ℛ̅4 =

{
 
 
 
 

 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) }
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v. The CLD-linear order-FR ℛ̅5 on 𝜏𝑓 is as follow 

ℛ̅5 =

{
 
 
 
 

 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑏), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) }
 
 
 
 

 
 
 
 

 

Definition 12.  The converse relation ℛ̅𝑐 for CLDFR ℛ̅ is defined as, 

ℛ̅𝑐 = {(𝑏, 𝑎) ∶ (𝑎, 𝑏) ∈ ℛ̅} 
Example 12. The converse relation ℛ̅𝑐for CLDFR 

ℛ̅ =

{
 
 
 
 

 
 
 
  ((𝑎,𝑚), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.3340)), (0.123𝑒𝑖2𝜋(0.233), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑏, 𝑙), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑏, 𝑛), (0.242𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) ,

((𝑐,𝑚), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.244𝑒𝑖2𝜋(0.301), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑐, 𝑛), (0.242𝑒𝑖2𝜋(0.209), 0.367𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) }
 
 
 
 

 
 
 
 

 

Such that ℛ̅ is a CLDFR between CLDFSs 

𝜏𝑓 =

{
 
 
 

 
 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 
 

 
 
 

 and 

𝜈𝑓 =

{
 
 
 

 
 
 (

𝑙, (0.313𝑒𝑖2𝜋(0.323), 0.435𝑒𝑖2𝜋(0.381)),

(0.296𝑒𝑖2𝜋(0.357), 0.374𝑒𝑖2𝜋(0.329))
) ,

(
𝑚, (0.404𝑒𝑖2𝜋(0.332), 0.297𝑒𝑖2𝜋(0.340)),

(0.244𝑒𝑖2𝜋(0.353), 0.607𝑒𝑖2𝜋(0.359))
) ,

(
𝑛, (0.242𝑒𝑖2𝜋(0.349), 0.367𝑒𝑖2𝜋(0.492)),

(0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))
)
}
 
 
 

 
 
 

 is given as, 

ℛ̅𝑐 =

{
 
 
 
 

 
 
 
  ((𝑚, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.3340)), (0.123𝑒𝑖2𝜋(0.233), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑙, 𝑏), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑛, 𝑏), (0.242𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) ,

((𝑚, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.244𝑒𝑖2𝜋(0.301), 0.607𝑒𝑖2𝜋(0.359))) ,

((𝑛, 𝑐), (0.242𝑒𝑖2𝜋(0.209), 0.367𝑒𝑖2𝜋(0.492)), (0.337𝑒𝑖2𝜋(0.287), 0.399𝑒𝑖2𝜋(0.395))) }
 
 
 
 

 
 
 
 

     

The CLD-equivalence-FRs generate the concept of CLD-equivalence classes, which are described 
as follows. 
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Definition 13.  Let ℛ̅ is an CLD-equivalence-FR, then CLDF-equivalence class of 𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 ℛ̅ is 
defined as, ℛ̅[𝑎] = {𝑏|(𝑏, 𝑎) ∈ ℛ̅}. 

Example 13.  Let  

ℛ̅ =

{
 
 
 
 

 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑐), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) }
 
 
 
 

 
 
 
 

 

is an CLD-equivalence-FR on an CLDFS  

𝜏𝑓 =

{
 
 
 

 
 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 
 

 
 
 

 

Then CLDF-equivalence class of 
i. 𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 ℛ̅ is given as 

ℛ̅[𝑎] =

{
 
 

 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 

 
 

 

ii. 𝑏 𝑚𝑜𝑑𝑢𝑙𝑜 ℛ̅ is given as 

ℛ̅[𝑏] = {(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))
)} 

iii. 𝑐 𝑚𝑜𝑑𝑢𝑙𝑜 ℛ̅ is given as 

              ℛ̅[𝑐] =

{
 
 

 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 

 
 

 

Definition 14.  Let ℛ̅ be an CLDFR on an CLDFS 𝜏𝑓, then CLD-composite-FR ℛ̅ ∘ ℛ̅ is defined as, 

∀ (𝑎, 𝑏) ∈ ℛ̅ and (𝑏, 𝑐) ∈ ℛ̅ ⇒ (𝑎, 𝑐) ∈ ℛ̅ ∘ ℛ̅, ∀𝑎, 𝑏, 𝑐 ∈ 𝜒.  
Example 14. Let ℛ̅1 and ℛ̅2  be two CLDFR’s such that  

ℛ̅1 =

{
 
 

 
 ((𝑎, 𝑏), (0.317𝑒

𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑐, 𝑏), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) }
 
 

 
 

  

and  
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ℛ̅2 =

{
  
 

  
 ((𝑎, 𝑐), (0.321𝑒

𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑐, 𝑏), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) }
  
 

  
 

 

on CLDFS 𝜏𝑓 =

{
 
 
 

 
 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒 𝑖2𝜋(0.213))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
)
}
 
 
 

 
 
 

, 

Then the CLD-composite-FR ℛ̅1 ∘ ℛ̅2 is given as, 

ℛ̅1 ∘ ℛ̅2 =

{
 
 

 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑐), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) }
 
 

 
 

 

Theorem 1. An CLDFR ℛ̅ is an CLD-symmetric-FR on an CLDFS 𝜏𝑓  𝑖𝑓𝑓 ℛ̅ = ℛ̅𝑐. 

Proof. Assume that ℛ̅ = ℛ̅𝑐, then 
(𝑎, 𝑏) ∈ ℛ̅ ⇒ (𝑏, 𝑎) ∈ ℛ̅𝑐 ⇒ (𝑏, 𝑎) ∈ ℛ̅. 

Thus, ℛ̅ is an CLD-symmetric-FR on an CLDFS 𝜏𝑓 . 

Conversely, suppose that ℛ̅ is an CLD-symmetric-FR on an CLDFS 𝜏𝑓 , then  

(𝑎, 𝑏) ∈ ℛ̅ ⇒ (𝑏, 𝑎) ∈ ℛ̅. 
However, (𝑏, 𝑎) ∈ ℛ̅𝑐 ⇒ ℛ̅ = ℛ̅𝑐. 
Theorem 2.  An CLDFR ℛ̅ is an CLD-transitive-FR on an CLDFS 𝜏𝑓  𝑖𝑓𝑓 ℛ̅ ∘ ℛ̅ ⊆ ℛ̅. 

Proof. Assume that ℛ̅ is an CLD-transitive-FR on an 𝐶𝐿𝐷FS 𝜏𝑓 . 

Let  (𝑎, 𝑐) ∈ ℛ̅ ∘ ℛ̅, 
Then, by definition of CLD-transitive-FR, 
(𝑎, 𝑏) ∈ ℛ̅ and (𝑏, 𝑐) ∈ ℛ̅ ⇒ (𝑎, 𝑐) ∈ ℛ̅ ⇒ ℛ̅ ∘ ℛ̅ ⊆ ℛ̅. 
Conversely assume that ℛ̅ ∘ ℛ̅ ⊆ ℛ̅, then 
For (𝑎, 𝑏) ∈ ℛ̅ and (𝑏, 𝑐) ∈ ℛ̅ ⇒ (𝑎, 𝑐) ∈ ℛ̅ ∘ ℛ̅ ⊆ ℛ̅ ⇒ (𝑎, 𝑐) ∈ ℛ̅. 
Thus, ℛ̅ is an CLD-transitive-FR on an CLDFS 𝜏𝑓. 

Theorem 3.  Suppose  ℛ̅ is an CLD-equivalence-FR on an CLDFS 𝜏𝑓, then ℛ̅ ∘ ℛ̅ = ℛ̅. 

Proof. Assume that (𝑎, 𝑏) ∈ ℛ̅, 
Then by definition of CLD-symmetric-FR, 

(𝑏, 𝑎) ∈ ℛ̅. 
Now, by using the definition of CLD-transitive-FR, 

(𝑎, 𝑎) ∈ ℛ̅. 
However, by the definition of CLD-composite-FR, 

(𝑎, 𝑎) ∈ ℛ̅ ∘ ℛ̅. 
Thus, ℛ̅ ⊆ ℛ̅ ∘ ℛ̅ (1) 
Conversely, assume that (𝑎, 𝑏) ∈ ℛ̅ ∘ ℛ̅, then ∃ 𝑐 ∈ 𝑈 ∋ (𝑎, 𝑐) ∈ ℛ̅ and (𝑐, 𝑏) ∈ ℛ̅. 
However, it is given that ℛ̅ is an CLD-equivalence-FR on CLDFS 𝜏𝑓 , so ℛ̅ is also an CLD-transitive-

FR. Therefore, (𝑎, 𝑏) ∈ ℛ̅ ⇒ ℛ̅ ∘ ℛ̅ ⊆ ℛ̅ (2) 
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Thus, by (1) and (2), 

ℛ̅ ∘ ℛ̅ = ℛ̅ 
Theorem 4.  Suppose ℛ̅ is an CLD-partial order-FR on an CLDFS 𝜏𝑓, then the converse relation 

ℛ̅𝑐 of ℛ̅ is also an CLD-partial order-FR on an CLDFS 𝜏𝑓 . 

Proof. In order to prove the assertion, it is sufficient to show that the converse of a complex linear 
Diophantine partial order fuzzy relation ℛ̅𝑐 satisfies the three properties of complex linear 
Diophantine partial order fuzzy relation. 

By using the properties of CLD-partial order-FR ℛ̅, we prove the statement. 
i. It is given that ℛ̅ is an CLD-reflexive-FR. Therefore, for any 𝑎 ∈ 𝑈, (𝑎, 𝑎) ∈ ℛ̅ ⇒ (𝑎, 𝑎) ∈

ℛ̅𝑐. Thus, ℛ̅𝑐 is an CLD-reflexive-FR. 
ii. Assume that (𝑎, 𝑎) ∈ ℛ̅𝑐 and (𝑏, 𝑎) ∈ ℛ̅𝑐, then, (𝑎, 𝑏) ∈ ℛ̅ and (𝑏, 𝑎) ∈ ℛ̅. However, ℛ̅ is 

an CLD-antisymmetric-FR. Therefore, (𝑎, 𝑏) = (𝑏, 𝑎). Thus, ℛ̅𝑐 is an CLD-antisymmetric-
FR. 

iii. Suppose that (𝑎, 𝑏) ∈ ℛ̅𝑐 and (𝑏, 𝑐) ∈ ℛ̅𝑐, then, (𝑐, 𝑏) ∈ ℛ̅ and (𝑏, 𝑎) ∈ ℛ̅. However, it is 
given that ℛ̅ is an CLD-transitive-FR. Therefore, (𝑐, 𝑎) ∈ ℛ̅ ⇒ (𝑎, 𝑐) ∈ ℛ̅𝑐. Thus, ℛ̅𝑐 is an 
CLD-transitive-FR. 

From i, ii and iii, the converse relation ℛ̅𝑐 of an CLD-partial order-FR ℛ̅ is proved to be an CLD-
partial order-FR too. 

Theorem 5.  Suppose ℛ̅ is an CLD-equivalence-FR on an CLDFS 𝜏𝑓, then (𝑎, 𝑏) ∈ ℛ̅, 𝑖𝑓𝑓 ℛ̅[𝑎] =

ℛ̅[𝑏]. 
Proof. Assume that (𝑎, 𝑏) ∈ ℛ̅ and 𝑐 ∈ ℛ̅[𝑎] ⇒ (𝑐, 𝑎) ∈ ℛ̅. 
Now, by using the fact that an CLD-equivalence-FR is also an CLD-transitive-FR, so (𝑐, 𝑏) ∈ ℛ̅ ⇒

𝑐 ∈ ℛ̅[𝑏]. 
Thus, ℛ̅[𝑎] ⊆ ℛ̅[𝑏] (3) 
As (𝑎, 𝑏) ∈ ℛ̅, by using the fact that an CLD-equivalence-FR is also an CLD-symmetric-FR, so 

(𝑏, 𝑎) ∈ ℛ̅. 
Additionally, assume that 𝑐 ∈ ℛ̅[𝑏] ⇒ (𝑐, 𝑏) ∈ ℛ̅. 
Now, again by using the fact that an CLD-equivalence-FR is also an CLD-transitive-FR, so 

(𝑐, 𝑎) ∈ ℛ̅ ⇒ 𝑐 ∈ ℛ̅[𝑎] 
Thus, ℛ̅[𝑎] ⊇ ℛ̅[𝑏] (4) 
Therefore, from (3) and (4) 

ℛ̅[𝑎] = ℛ̅[𝑏] 
Conversely, assume that ℛ̅[𝑎] = ℛ̅[𝑏], 𝑐 ∈ ℛ̅[𝑎] and 𝑐 ∈ ℛ̅[𝑏] ⇒  (𝑐, 𝑏) ∈ ℛ̅ and (𝑐, 𝑎) ∈ ℛ̅. 
Again, by using the fact that an CLD-equivalence-FR is also an CLD-symmetric-FR, so (𝑐, 𝑎) ∈ ℛ̅ ⇒

(𝑎, 𝑐) ∈ ℛ̅. 
Now, by definition of CLD-transitive-FR, 
(𝑎, 𝑐) ∈ ℛ̅ and (𝑐, 𝑏) ∈ ℛ̅ ⇒ (𝑎, 𝑏) ∈ ℛ̅. 
Hence proved. 
 

4. Hasse Diagram for CLD-Partial Order-FRs: 
In this segment, we define the Hasse diagram for CLD-partial order-FR. In order to illustrate the 

CLD-partial order-FR framework, the Hasse diagram is essential. This diagram is a graphical tool that 
simplifies the understanding of complex relationships in such frameworks. In a Hasse diagram, 
elements of partially ordered set are represented by points (vertices), and the ordering relation 
between the element is represented by connecting line segment (edges). In constructing a Hasse 
diagram, certain rules are discussed below: 
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i. The elements are organized from lower to higher ranks. In any pair, the first element is 
smaller than the second. For instance, in (𝑎, 𝑏), 𝑎 is smaller and is placed lower than 𝑏 in 
the diagram. 

ii. A self-relation is not represented by a line. Instead, its existence is understood without 
explicit representation. 

iii. Unlike other diagrams, the Hasse diagram doesn’t use arrows. The arrangement of 
element in relation to each other indicates their order, removing the need for directional 
indicators. 

iv. Unnecessary lines are omitted in the diagram. For instance, when considering the element 
(𝑎, 𝑏) and their transitive relationship with (𝑎, 𝑐) only two lines are drawn: one from 𝑎 to 
𝑏 and another from 𝑎 to 𝑐. This approach makes indirect relationship easier to understand 
and simplifies the diagram.  

Example 15. Consider CLDFS 

𝜏𝑓 =

{
 
 
 
 

 
 
 
 (
𝑎, (0.321𝑒𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)),

(0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))
) ,

(
𝑏, (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)),

(0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))
) ,

(
𝑐, (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)),

(0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))
) ,

(
𝑙, (0.313𝑒𝑖2𝜋(0.323), 0.435𝑒𝑖2𝜋(0.381)),

(0.296𝑒𝑖2𝜋(0.357), 0.374𝑒𝑖2𝜋(0.329))
)
}
 
 
 
 

 
 
 
 

in a universal set 𝜒. 

Then the cartesian product 𝜏𝑓 × 𝜏𝑓 is given as 

𝜏𝑓 × 𝜏𝑓=

{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑐), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑎, 𝑙), (0.313𝑒𝑖2𝜋(0.292), 0.435𝑒𝑖2𝜋(0.381)), (0.123𝑒𝑖2𝜋(0.233), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑏, 𝑎), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑏, 𝑐), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑏, 𝑙), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑐, 𝑎), (0.321𝑒𝑖2𝜋(0.209), 0.372𝑒𝑖2𝜋(0.371)), (0.123𝑒𝑖2𝜋(0.233), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑏), (0.317𝑒𝑖2𝜋(0.209), 0.421𝑒𝑖2𝜋(0.371)), (0.346𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑐, 𝑙), (0.313𝑒𝑖2𝜋(0.209), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.301), 0.374𝑒𝑖2𝜋(0.345))) ,

((𝑙, 𝑎), (0.313𝑒𝑖2𝜋(0.292), 0.435𝑒𝑖2𝜋(0.381)), (0.123𝑒𝑖2𝜋(0.233), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑙, 𝑏), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑙, 𝑐), (0.313𝑒𝑖2𝜋(0.209), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.301), 0.374𝑒𝑖2𝜋(0.345))) ,

((𝑙, 𝑙), (0.313𝑒𝑖2𝜋(0.323), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.357), 0.374𝑒𝑖2𝜋(0.329))) }
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A CLD-partial order-FR ℛ̅ is 

ℛ̅ =

{
 
 
 
 
 
 

 
 
 
 
 
 ((𝑎, 𝑎), (0.321𝑒

𝑖2𝜋(0.292), 0.372𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑎, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.217)), (0.123𝑒𝑖2𝜋(0.233), 0.347𝑒𝑖2𝜋(0.229))) ,

((𝑏, 𝑏), (0.317𝑒𝑖2𝜋(0.211), 0.421𝑒𝑖2𝜋(0.212)), (0.346𝑒𝑖2𝜋(0.333), 0.315𝑒𝑖2𝜋(0.213))) ,

((𝑐, 𝑐), (0.348𝑒𝑖2𝜋(0.209), 0.331𝑒𝑖2𝜋(0.371)), (0.369𝑒𝑖2𝜋(0.301), 0.373𝑒𝑖2𝜋(0.345))) ,

((𝑙, 𝑎), (0.313𝑒𝑖2𝜋(0.292), 0.435𝑒𝑖2𝜋(0.381)), (0.123𝑒𝑖2𝜋(0.233), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑙, 𝑏), (0.313𝑒𝑖2𝜋(0.211), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.333), 0.374𝑒𝑖2𝜋(0.329))) ,

((𝑙, 𝑐), (0.313𝑒𝑖2𝜋(0.209), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.301), 0.374𝑒𝑖2𝜋(0.345))) ,

((𝑙, 𝑙), (0.313𝑒𝑖2𝜋(0.323), 0.435𝑒𝑖2𝜋(0.381)), (0.296𝑒𝑖2𝜋(0.357), 0.374𝑒𝑖2𝜋(0.329))) }
 
 
 
 
 
 

 
 
 
 
 
 

 

The Hasse Diagram for this relation is given in Figure 1. 
Definition 15. Suppose a Hasse diagram that illustrate an CLD-partial order-FR, then the following 

element is referred to as: 
i. The maximal element if there is no other element greater than it. e.g., an element 𝑎 is 

maximal if there is no other element 𝑏 such that 𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏. 
ii. The minimal element if there is no other element smaller than it. e.g., an element 𝑎 is 

minimal if there is no other element 𝑏 such that 𝑏 ≤ 𝑎 and 𝑎 ≠ 𝑏. 
iii. The maximum or the greatest element if all element associated with it are smaller than it. 

e.g., an element 𝑎 is maximum if for every element 𝑏 such that 𝑏 < 𝑎. 
iv. The minimum or the least element if all element associated with it are greater than it. 

e.g., an element 𝑎 is minimum if for every element 𝑏 such that 𝑎 < 𝑏. 
In Figure 1, the elements 𝑏 and 𝑐 are maximum elements, while 𝑙 is the minimal as well as 

minimum element. The only maximal element is 𝑏. 
 

 
Fig. 1. Hasse Diagram for ℛ̅ in example 15 
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Definition 16. If 𝒲 represent any non-empty subset of an CLD-partial order-FS 𝜏𝑓 , then an 

element 𝑟 ∈ ℛ̅ ⊆ 𝜏𝑓 × 𝜏𝑓 is referred to as: 

i. Upper bound of 𝒲 if (𝑏, 𝑎) ∈ ℛ̅, for all 𝑏 ∈ 𝒲. 
ii. Lower bound of 𝒲 if (𝑎, 𝑏) ∈ ℛ̅, for all 𝑏 ∈ 𝒲. 

iii. Supremum of 𝒲 if it is a least upper bound of 𝒲. 
iv. Infimum of 𝒲 if it is a greatest lower bound of 𝒲. 

 
5. Application 

This section presents the implementation of proposed work in application by applying examined 
relations and their various forms in data loss prevention technique of cybersecurity. 

 
5.1 Data Loss Prevention (DLP) 

A data breach or leak occurs when private, protected, or sensitive information is disclosed to an 
untrustworthy source. Insider trading by employees or former employees of a company, hacker 
assaults, or unintended data loss or exposure are all potential causes of data breaches. 

Unauthorized duplication or transmission of data without affecting the original material is known 
as information leakage, also known as exfiltration. In certain cases, breaches result in the complete 
loss of data, such as ransomware attacks, in which hackers encrypt data to prevent the owner from 
accessing it. 

Thus, a vital part of contemporary information security measures is data loss prevention (DLP), 
which protects sensitive data from illegal access, disclosure, or exfiltration. Through the 
implementation of policies and controls that regulate the usage, storage, and transport of private 
information inside an organization, DLP solutions are intended to identify, track, and avert data 
breaches. 

Data loss prevention (DLP) is a critical component of cybersecurity solutions that protect sensitive 
data from unauthorized access, leakage, or theft. DLP solutions help businesses monitor, identify, 
and prevent the unauthorized transmission or theft of sensitive data across networks, endpoints, and 
cloud-based settings. 

 
5.1.1 Security techniques of DLP 

DLP uses following data security techniques: 
i. Sensitive Data Discovery: DLP systems may scan and detect sensitive data on an 

organization's network, such as personally identifiable information (PII), financial data, 
intellectual property, and private documents. Organizations may improve their data 
landscape and security measures by categorizing and marking sensitive data. 

ii. Data Surveillance and Inspection: DLP technologies continually monitor data in motion, at 
rest, and in use to keep track of how sensitive information is obtained, shared, and utilized 
inside the business. This surveillance allows for finding any illegal acts or legislative 
infractions in actual time. 

iii. Policy Enforcement: DLP systems let firms develop and implement data security rules 
based on regulatory requirements, industry standards, and internal guidelines. Policies 
might include guidelines for data management, access restrictions, encryption, and data 
protection to help prevent data loss issues. 

iv. Data Encryption: DLP systems frequently feature encrypted features to safeguard 
sensitive data in route and at rest. Encryption guarantees that data, even if intercepted or 
stolen, remains unintelligible and safe, lowering the risk of hacking and illegal access. 
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v. Endpoint Guarding: DLP systems may be installed on endpoints such as laptops, desktop 
computers, and mobile devices to monitor and regulate data transfers and prevent data 
leakage via removable storage devices, email attachments, or cloud services. Endpoint 
DLP protects data on gadgets used by employees both within and outside of the 
company's intranet. 

vi. Cloud Data Protection: As cloud services become more widely used, DLP systems' 
capabilities expand to secure data stored in cloud settings. Organizations may use DLP 
policies to govern data access, sharing, and storage in cloud services, limiting the risk of 
information and compliance breaches. 

vii. User Activity Monitoring: DLP systems monitor user behavior and activities involving 
highly confidential information access & usage. Organizations can detect dangers from 
insiders, illegal data transfers, and hazardous behaviors that might result in data loss 
events by monitoring how people interact with material. 

Thus, through the use of content discovery, encryption, access restrictions, and monitoring 
systems, DLP solutions let businesses track sensitive data consumption, proactively detect sensitive 
information, and stop it from being disclosed without authorization. 

In addition, the proliferation of mobile devices, cloud computing, and remote work settings, 
among other technological advancements, has increased the attack surface for possible data 
breaches. DLP systems have therefore evolved to meet these new difficulties by adding protection 
to networks, endpoints, and cloud environments, guaranteeing thorough data security on a variety 
of platforms. 

Adopting strong DLP protections is essential for organizations, as the volume of data collected 
and exchanged across digital platforms has increased and so has the danger of data breaches. By 
taking these precautions, firms may preserve consumer trust, safeguard intellectual property, comply 
with legal obligations, and lessen the financial and reputational harm caused by data loss events. 

Furthermore, by implementing these strategies and technologies, organizations can effectively 
secure data in any state, ensuring that sensitive information is protected against interception, 
unauthorized access, and data breaches. For instance, following securing data states are classified 
below: 

i. Securing data in motion: A Data in motion in DLP is secured by utilizing network 
monitoring techniques, such as deep packet inspection and secure gateways, to identify 
and stop unwanted data transfers, as well as by encrypting data during transmission using 
technologies like TLS and VPNs. 

ii. Securing data at rest: Implementing access controls to guarantee that only authorized 
users can access sensitive information and encrypting stored data to prevent 
unauthorized access are two ways to secure data at rest in DLP. In order to identify and 
address possible security risks, observe and audit data access on a regular basis. 

iii. Securing data in use: In order to secure data used in DLP, use contextual policies to enforce 
access controls and stop unauthorized use or leakage, as well as real-time monitoring and 
analysis of data exchanges. 

iv. Securing endpoints: Utilize device control mechanisms to limit the usage of external 
storage devices and unauthorized programs, and deploy endpoint protection software to 
monitor and regulate data activities in order to secure endpoints in DLP. 

v. Data identification: Utilizing continuous learning approaches to adjust to changing data 
patterns and risks, secure data identification via machine learning in DLP involves training 
models with a variety of datasets to improve recognition accuracy of sensitive 
information. 
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vi. Data detection: Secure data loss detection in DLP can be achieved by utilizing machine 
learning algorithms for precise anomaly detection, carefully crafting policies to track data 
movement, and identifying sensitive information using sophisticated content inspection 
methods. 

5.1.2 Threats 
Although, data loss prevention system has their own set of threats and challenges, even though 

they are crucial for safeguarding sensitive data. So thus, for DLP to be implemented successfully, it is 
essential to comprehend these threats (Table 1).  

The following are the main threats related with DLP: 
i. Insider Leaks: Disgruntled workers, former workers who still have access credentials to 

private networks, and business partners are examples of insider risks. They may be driven 
by retaliation, money, or information that has economic value. 

ii. Extrusion by attackers: Sensitive data is kept by organizations on a variety of gadgets, 
including desktop computers, servers, thumb drives, laptops, and portable hard drives. 
Any of these devices might be inadvertently misplaced by organization personnel or 
physically taken by an attacker, leading to a breach. 

iii. Unintended Disclosure: Many data breaches result from the inadvertent disclosure of 
private information rather than from an assault. IT workers may inadvertently expose a 
critical internal server to the Internet, or employees may access sensitive data and store 
it in an insecure place. 
 

Table 1  
Details of threats 
Causes Notation Membership Non-Membership Parameter A Parameter B 

Insider leakage 𝑇1 0.721𝑒𝑖2𝜋(0.643) 0.292𝑒𝑖2𝜋(0.287) 0.753ei2π(0.633) 0.246𝑒𝑖2𝜋(0.329) 
Extrusion by attackers 𝑇2 0.425𝑒𝑖2𝜋(0.311) 0.526𝑒𝑖2𝜋(0.412) 0.546𝑒𝑖2𝜋(0.523) 0.415𝑒𝑖2𝜋(0.413) 
Unintended disclosure 𝑇3 0.278𝑒𝑖2𝜋(0.409) 0.861𝑒𝑖2𝜋(0.376) 0.319𝑒𝑖2𝜋(0.501) 0.673𝑒𝑖2𝜋(0.445) 

 
5.1.3 Component of Data Loss Solution or States of securing data loss 

Following main data loss states are supported by DLP systems to secure organizations from data 
breaches or leakage (Table 2): 

i. Securing data in motion (transferred data) 
ii. Securing endpoints 

iii. Securing data-at-rest 
iv. Securing data in use 
v. Data identification 

vi. Data leak detection 
 

Table 2  
Data loss states 
Securing states Notation Membership Non-Membership Parameter A Parameter B 

Securing data in motion 𝑆𝑚 0.812𝑒𝑖2𝜋(0.222) 0.261𝑒𝑖2𝜋(0.532) 0.625𝑒𝑖2𝜋(0.357) 0.274𝑒𝑖2𝜋(0.566) 
Securing endpoints 𝑆𝑒 0.441𝑒𝑖2𝜋(0.334) 0.357𝑒𝑖2𝜋(0.349) 0.512𝑒𝑖2𝜋(0.353) 0.407𝑒𝑖2𝜋(0.459) 
Securing data at rest 𝑆𝑟  0.542𝑒𝑖2𝜋(0.549) 0.364𝑒𝑖2𝜋(0.492) 0.437𝑒𝑖2𝜋(0.264) 0.521𝑒𝑖2𝜋(0.573) 
Securing data in use 𝑆𝑢 0.642𝑒𝑖2𝜋(0.359) 0.327𝑒𝑖2𝜋(0.492) 0.671𝑒𝑖2𝜋(0.257) 0.332𝑒𝑖2𝜋(0.595) 
Data identification 𝑆𝑖  0.347𝑒𝑖2𝜋(0.649) 0.417𝑒𝑖2𝜋(0.491) 0.327𝑒𝑖2𝜋(0.587) 0.599𝑒𝑖2𝜋(0.345) 
Data leak detection 𝑆𝑑  0.243𝑒𝑖2𝜋(0.319) 0.558𝑒𝑖2𝜋(0.482) 0.415𝑒𝑖2𝜋(0.457) 0.518𝑒𝑖2𝜋(0.397) 
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5.2 Calculations 
In this section, the relationships are examined, focusing on efficacy and inefficacy of each 

cybersecurity technique in preventing data loss. We perform the following analysis. The following 
two CLDFSs 𝜈𝑓 and 𝜏𝑓, illustrating the set of components of data loss solution and the set of threads 

are carried out, respectively. 

𝜈𝑓 =

{
 
 
 

 
 
 (
𝑆𝑚, (0.812𝑒

𝑖2𝜋(0.222), 0.261𝑒𝑖2𝜋(0.532)),

(0.625𝑒𝑖2𝜋(0.357), 0.274𝑒𝑖2𝜋(0.566))
) , (

𝑆𝑒 , (0.441𝑒
𝑖2𝜋(0.334), 0.357𝑒𝑖2𝜋(0.349)),

(0.512𝑒𝑖2𝜋(0.353), 0.407𝑒𝑖2𝜋(0.459))
) ,

(
𝑆𝑟 , (0.542𝑒

𝑖2𝜋(0.549), 0.364𝑒𝑖2𝜋(0.492)),

(0.437𝑒𝑖2𝜋(0.264), 0.521𝑒𝑖2𝜋(0.573))
) , (

𝑆𝑢, (0.642𝑒
𝑖2𝜋(0.359), 0.327𝑒𝑖2𝜋(0.492)),

(0.671𝑒𝑖2𝜋(0.257), 0.332𝑒𝑖2𝜋(0.595))
) ,

(
𝑆𝑖, (0.347𝑒

𝑖2𝜋(0.649), 0.417𝑒𝑖2𝜋(0.491)),

(0.327𝑒𝑖2𝜋(0.587), 0.599𝑒𝑖2𝜋(0.345))
) , (

𝑆𝑑, (0.243𝑒
𝑖2𝜋(0.319), 0.558𝑒𝑖2𝜋(0.482)),

(0.415𝑒𝑖2𝜋(0.457), 0.518𝑒𝑖2𝜋(0.397))
)
}
 
 
 

 
 
 

 

𝜏𝑓 =

{
 
 

 
 (
𝑇1, (0.821𝑒

𝑖2𝜋(0.643), 0.292𝑒𝑖2𝜋(0.287)),

(0.753𝑒𝑖2𝜋(0.633), 0.246𝑒𝑖2𝜋(0.329))
) , (

𝑇2, (0.525𝑒
𝑖2𝜋(0.311), 0.326𝑒𝑖2𝜋(0.412)),

(0.546𝑒𝑖2𝜋(0.523), 0.415𝑒𝑖2𝜋(0.413))
) ,

(
𝑇3, (0.378𝑒

𝑖2𝜋(0.409), 0.461𝑒𝑖2𝜋(0.376)),

(0.319𝑒𝑖2𝜋(0.501), 0.673𝑒𝑖2𝜋(0.445))
)

}
 
 

 
 

 

Thus, we utilize the cartesian product to determine the effectiveness of specific threats against 
specific components of data loss solution. Which is given below: 

𝜈𝑓 × 𝜏𝑓 =

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ((𝑆𝑚, 𝑇1), (0.721𝑒

𝑖2𝜋(0.222), 0.292𝑒𝑖2𝜋(0.532)), (0.625𝑒𝑖2𝜋(0.357), 0.246𝑒𝑖2𝜋(0.566))) ,

((𝑆𝑚, 𝑇2), (0.425𝑒
𝑖2𝜋(0.222), 0.326𝑒𝑖2𝜋(0.217)), (0.512𝑒𝑖2𝜋(0.353), 0.415𝑒𝑖2𝜋(0.566))) ,

((𝑆𝑚, 𝑇3), (0.278𝑒
𝑖2𝜋(0.222), 0.461𝑒𝑖2𝜋(0.532)), (0.319𝑒𝑖2𝜋(0.357), 0.673𝑒𝑖2𝜋(0.566))) ,

((𝑆𝑒, 𝑇1), (0.441𝑒
𝑖2𝜋(0.334), 0.357𝑒𝑖2𝜋(0.349)), (0.512𝑒𝑖2𝜋(0.353), 0.407𝑒𝑖2𝜋(0.459))) ,

((𝑆𝑒 , 𝑇2), (0.425𝑒
𝑖2𝜋(0.311), 0.357𝑒𝑖2𝜋(0.412)), (0.512𝑒𝑖2𝜋(0.353), 0.415𝑒𝑖2𝜋(0.459))) ,

((𝑆𝑒, 𝑇3), (0.278𝑒
𝑖2𝜋(0.334), 0.461𝑒𝑖2𝜋(0.376)), (0.319𝑒𝑖2𝜋(0.353), 0.673𝑒𝑖2𝜋(0.459))) ,

((𝑆𝑟 , 𝑇1), (0.542𝑒
𝑖2𝜋(0.549), 0.364𝑒𝑖2𝜋(0.492)), (0.437𝑒𝑖2𝜋(0.264), 0.521𝑒𝑖2𝜋(0.573))) ,

((𝑆𝑟 , 𝑇2), (0.425𝑒
𝑖2𝜋(0.311), 0.364𝑒𝑖2𝜋(0.492)), (0.437𝑒𝑖2𝜋(0.264), 0.521𝑒𝑖2𝜋(0.573))) ,

((𝑆𝑟 , 𝑇3), (0.278𝑒
𝑖2𝜋(0.409), 0.461𝑒𝑖2𝜋(0.492)), (0.319𝑒𝑖2𝜋(0.264), 0.673𝑒𝑖2𝜋(0.573))) ,

((𝑆𝑢, 𝑇1), (0.642𝑒
𝑖2𝜋(0.359), 0.327𝑒𝑖2𝜋(0.412)), (0.671𝑒𝑖2𝜋(0.257), 0.332𝑒𝑖2𝜋(0.595))) ,

((𝑆𝑢, 𝑇2), (0.425𝑒
𝑖2𝜋(0.311), 0.327𝑒𝑖2𝜋(0.492)), (0.546𝑒𝑖2𝜋(0.257), 0.415𝑒𝑖2𝜋(0.595))) ,

((𝑆𝑢, 𝑇3), (0.278𝑒
𝑖2𝜋(0.359), 0.461𝑒𝑖2𝜋(0.492)), (0.319𝑒𝑖2𝜋(0.257), 0.673𝑒𝑖2𝜋(0.595))) ,

((𝑆𝑖, 𝑇1), (0.347𝑒
𝑖2𝜋(0.643), 0.417𝑒𝑖2𝜋(0.491)), (0.327𝑒𝑖2𝜋(0.587), 0.599𝑒𝑖2𝜋(0.345))) ,

((𝑆𝑖, 𝑇2), (0.347𝑒
𝑖2𝜋(0.311), 0.417𝑒𝑖2𝜋(0.491)), (0.327𝑒𝑖2𝜋(0.523), 0.599𝑒𝑖2𝜋(0.413))) ,

((𝑆𝑖, 𝑇3), (0.243𝑒
𝑖2𝜋(0.319), 0.461𝑒𝑖2𝜋(0.491)), (0.319𝑒𝑖2𝜋(0.501), 0.673𝑒𝑖2𝜋(0.445))) ,

((𝑆𝑑, 𝑇1), (0.243𝑒
𝑖2𝜋(0.319), 0.558𝑒𝑖2𝜋(0.482)), (0.415𝑒𝑖2𝜋(0.457), 0.518𝑒𝑖2𝜋(0.397))) ,

((𝑆𝑑, 𝑇2), (0.243𝑒
𝑖2𝜋(0.319), 0.558𝑒𝑖2𝜋(0.482)), (0.415𝑒𝑖2𝜋(0.457), 0.518𝑒𝑖2𝜋(0.413))) ,

((𝑆𝑑, 𝑇3), (0.243𝑒
𝑖2𝜋(0.319), 0.558𝑒𝑖2𝜋(0.482)), (0.319𝑒𝑖2𝜋(0.457), 0.673𝑒𝑖2𝜋(0.445))) }
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The 𝜈𝑓 × 𝜏𝑓 represents the relation between the set of components of data loss solution and the 

set of threats. For an ordered pair 

(

 
(a, b), (𝒜(τf ×νf)𝔐

(a, b)e
i2(𝒫(τf ×νf)𝔐

(a,b))π
, 𝒜(τf ×νf)𝔑

(a, b)e
i2(𝒫(τf ×νf)𝔑

(a,b))π
) ,

(𝒜(τf ×νf)𝔄, e
i2(𝒫(τf ×νf)𝔄

)π
,𝒜(τf ×νf)𝔅e

i2(𝒫(τf ×νf)𝔅
)π
) )

 , its 

specifically illustrates how the first element affects or influences the second within the ordered pair. 
Whereas the membership degree signifies the potency of security of data in different states against 
certain threats to address a particular time-related risk. However, the non-membership degree 
signifies the consequences related to threats over the securing data states. Moreover, the 
parameters related to membership and non-membership degrees represent the requirements of 
securing data states to be confronted over the penetration through threats to ensure data security. 

Such as,  ((𝑆𝑚, 𝑇1), (0.721𝑒𝑖2𝜋(0.222), 0.292𝑒𝑖2𝜋(0.532)), (0.625𝑒𝑖2𝜋
(0.357), 0.246𝑒𝑖2𝜋(0.566))) being an ordered pair 

illustrates that a data in motion can be secured more potently against the insider leakage risk. The 
values of degrees are stated as: the value of membership degree clarifies that security potency of 
data in motion against the exposure of data through insider leakage is 72.1% over the time span of 
approximately one-fourth unit and the value of non-membership degree signifies that the possibility 
of penetration of securing data in motion through insider leakage is 29.2% over the time span of 
approximately half unit. whereas, the values of parameters represent that the security of data in 
motion is required to be 62.5% in time span of approximately one-third to tackle the risk of insider 
leakage whereas the parameter value of non-membership indicates that 24.6% risk can be tolerated 
in time span of approximately half unit. 

 
6. Comparative Analysis 

This section compares intended CLDFR structure to current structures, such as CFRs, CIFRs, 
CPyFRs, CqROFRs and LDFRs, with the aim of suggested framework stability authentication. 

 
6.1 Comparison with FRs and CFRs: 

In FRs, the focus is only on real-valued degree of membership, while in CFRs a real-imaginary 
valued membership grades in term of amplitude and phase term are utilized concentrating on 
relationship grades without any limitations. But in CLDFRs a real-imaginary valued membership grade 
as well as non-membership grade along with parameters are introduced focusing on the ability to 
evaluate any relationship’s both potency and impotency. 

Moreover, in order to precisely model multivariable problems, the FRs and CFRs fail. So, the only 
way to handle such problems is through CLDFRs. 

Since CFR’s is the extended structure of FRs structure as discussed, so thus a thorough comparison 
of CFR’s and CLDFRs is presented below. 

By using CFR’s and considering the following two CFs  𝜈𝑓 and 𝜏𝑓, illustrating the set of components 

of data loss solution and the set of threats respectively, we analyze the problem stated in section 4.2. 
In order to simplify the computation process and finalize the comparative analysis certain 
components of data loss solution and threats sources are excluded. 

𝜈𝑓 = {
(𝑆𝑚, (0.812𝑒

𝑖2𝜋(0.222))), (𝑆𝑟 , (0.542𝑒
𝑖2𝜋(0.549))),

(𝑆𝑢, (0.642𝑒
𝑖2𝜋(0.359))), (𝑆𝑒 , (0.441𝑒

𝑖2𝜋(0.334)))
} 

𝜏𝑓 = {(𝑇1, (0.821𝑒
𝑖2𝜋(0.643))), (𝑇2, (0.525𝑒

𝑖2𝜋(0.311)))} 

The CFR ℛ̅ between 𝜈𝑓 and 𝜏𝑓  
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ℛ̅ =

{
  
 

  
 ((𝑆𝑚, 𝑇1), (0.721𝑒

𝑖2𝜋(0.222))) , ((𝑆𝑚, 𝑇2), (0.425𝑒
𝑖2𝜋(0.222))) ,

((𝑆𝑒, 𝑇1), (0.441𝑒
𝑖2𝜋(0.334))) , ((𝑆𝑒 , 𝑇2), (0.425𝑒

𝑖2𝜋(0.311))) ,

((𝑆𝑟 , 𝑇1), (0.542𝑒
𝑖2𝜋(0.549))) , ((𝑆𝑟 , 𝑇2), (0.425𝑒

𝑖2𝜋(0.311)) ,

((𝑆𝑢, 𝑇1), (0.642𝑒
𝑖2𝜋(0.359))) , ((𝑆𝑢, 𝑇2), (0.425𝑒

𝑖2𝜋(0.311))) }
  
 

  
 

 

As observed from above, CFR ℛ̅ simply provide information regarding the membership grade. 
That’s, because CFRs structure lacks any degree of non-membership, it only reveals the efficacy of 
security of data in different states against certain threats to address a particular time-related risk and 
hides the consequences related to threats over the securing data states. As a result, these structures 
provide limited amount of information and have significant restrictions.  

 
6.2 Comparison with IFRs, CIFRs, PyFRs, and CPyFRs 

As CLDFR, being a combination of real-imaginary valued membership degree, non-membership 
degree along with parameters in terms of amplitude and phase term model uncertainty with a 
structured, constraint-based approach. But, IFRs limited to real numbers, are restricted to handle 
single-variable problems. As a result, they lack a capability to address the problems related to time 
variations or those with phase transitions. Whereas, CIFRs structure deal with the real-imaginary 
valued membership degree and non-membership degree having amplitude and phase term but they 
are less effective due to the absence of parameters. Also, the sum of amplitude terms and phase 
terms of membership degree and non-membership degree respectively, must lies in unit interval, 
making CFRs restricted to limitations.  

Furthermore, PyFRs and CPyFRs, also have some limitations regarding membership and non-
membership grades and are incapable of dealing with parameters. so, it becomes less effective to 
handle problems more precisely. 

Thus, an advantage of CLDFRs over CIFRs and CPyFRs lies in their structured approach having 
parameters and negligence of restrictions related to degrees. 

 
6.3 Comparison with LDFRs  

The shortcoming of IFSs, PyFSs and q-ROFSs concerning membership and non-membership 
grades, as well as their incapacity to manage parameterization, are addressed by LDFSs. LDFRs 
broadens the analytical space by removing these limitations. By adding reference factor, LDFRs 
improve on current approaches by enabling the free selection of membership and non-membership 
grades. But LDFRs, in which the grades are limited to real valued, are unable to handle problems 
involving phase terms or time span. Thus, CLDFRs, which covers the problems that include both real 
and imaginary parts in term of amplitude and phase term, extend LDFRs by incorporating real-
imaginary valued membership, non-membership grades and parameters grades.  

By using LDFRs and considering the following two CFs 𝜈𝑓 and 𝜏𝑓, illustrating the set of components 

of data loss solution and the set of threats respectively, we analyze the problem stated in section 4.2. 
In order to simplify the computation process and finalize the comparative analysis, certain 
components of data loss solution and threats sources are excluded.   

𝜈𝑓 = {(
𝑆𝑚, (0.812,0.261),
(0.625,0.274)

) , (
𝑆𝑒 , (0.441,0.357),
(0.512,0.407)

) , (
𝑆𝑟 , (0.542,0.364),
(0.437,0.521)

) , (
𝑆𝑢, (0.642,0.327),
(0.671,0.332)

)} 

𝜏𝑓 = {(
𝑇1, (0.821,0.292),
(0.753,0.246)

) , (
𝑇2, (0.525,0.326),
(0.546,0.415)

)} 

The LDFR ℛ̅ between 𝜈𝑓  and 𝜏𝑓  



Spectrum of Operational Research 

Volume 3, Issue 1 (2026) 128-152 

150 
 
 

𝜈𝑓 × 𝜏𝑓 =

{
 
 

 
 
((𝑆𝑚, 𝑇1), (0.721,0.292), (0.625,0.246)), ((𝑆𝑚, 𝑇2), (0.425,0.326), (0.512,0.415)),

((𝑆𝑒, 𝑇1), (0.441,0.357), (0.512,0.407)), ((𝑆𝑒, 𝑇2), (0.425,0.357), (0.512,0.415)),

((𝑆𝑟, 𝑇1), (0.542,0.364), (0.437,0.521)), ((𝑆𝑟, 𝑇2), (0.425,0.364), (0.437,0.521)),

((𝑆𝑢, 𝑇1), (0.642,0.327), (0.671,0.332)), ((𝑆𝑢, 𝑇2), (0.425,0.327), (0.546,0.415)), }
 
 

 
 

 

As shown above, LDFR focus only real-valued problems, simply providing information based on 
real valued membership, non-membership grade and parameters. it only reveals the efficacy of 
security of data in different states against certain threats to address risk without being related to 
time and hides the consequences related to threats over the securing data states. 

 
7. Conclusion 

          In this paper, two new concepts are introduced: the cartesian product of two complex linear 
Diophantine fuzzy sets CLDFSs and the complex linear Diophantine fuzzy relation (CLDFR). 
Furthermore, the complex linear Diophantine equivalence fuzzy relation (CLD- equivalence-FR), CLD- 
partial-FR, CLD- total order-FR, CLD- composite-FR and many other forms of CLDFRs are also defined. 
Moreover, for the CLD- partial-FR and CLD- partial-FS, the Hasse diagram has been presented. In 
addition, definitions of terms and ideas associated with Hasse diagram have also been provided. For 
every definition, suitable examples are provided, and various results are demonstrated for different 
types of CLDFRs. Furthermore, the suggested concepts are applied to examine the relation between 
the components of data loss solution and risk related to threats. Through a contrast comparison with 
different substitute mathematical methodologies, the section named as comparative analysis 
demonstrate the superiority CLDFRs. Furthermore, it also summarizes the extensive framework of 
CLDFRs as well as the shortcomings of earlier frameworks. 
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