Some Refinements of Integral Inequalities over Triangular Fuzzy Co-Domain

Authors

DOI:

https://doi.org/10.31181/sor31202626

Keywords:

Lp space over triangular fuzzy number, Fuzzy domain, Triangular Hölder-like inequality, Triangular Minkowski’s-like inequality, Triangular Beckenbach’s-like inequality

Abstract

Integral inequalities, in general, serve as powerful tools for various applications. Specifically, when an integral operator is used as a predictive tool, an integral inequality can play a key role in defining, quantifying, and analyzing such processes. Real-valued functions over fuzzy domain, also referred to as real-valued functions, offer a valuable approach for incorporating uncertainty into prediction models. In this paper, using a straightforward proof method over newly defined triangular  fuzzy space, we established several new refinements for integral forms of classical Hölder’s and newly defined triangular Hölder’s-like inequality. Numerous existing inequalities linked with triangular Hölder's-like inequality over fuzzy domain can be improved through the newly obtained ones, as illustrated through applications like triangular Hölder’s power-mean-like integral inequality, triangular Cauchy-Schwarz-like inequality, triangular Minkowski’s-like inequality, and triangular Beckenbach’s-like inequality over fuzzy domain. Our main results Additionally, our outcomes represent significant progressions in the field of mathematics. 

Downloads

Download data is not yet available.

References

Todinov, M. (2021). Interpretation of algebraic inequalities: Practical engineering optimisation and generating new knowledge. CRC Press. https://doi.org/10.1201/9781003184470

Qin, Y. (2016). Integral and discrete inequalities and their applications. Birkhäuser. https://doi.org/10.1007/978-3-319-32921-8

Khan, M. B., Santos-García, G., Noor, M. A., & Soliman, M. S. (2022). Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos, Solitons & Fractals, 164, 112692. https://doi.org/10.1016/j.chaos.2022.112692

Khan, M. B., Catas, A., Aloraini, N., & Soliman, M. S. (2023). Some certain fuzzy fractional inequalities for up and down ℏ-pre-invex via fuzzy-number valued mappings. Fractal and Fractional, 7(2), 171. https://doi.org/10.3390/fractalfract7020171

Zhang, T., Deng, F., & Shi, P. (2023). Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2023.3266789

Jiang, X., Wang, Y., Zhao, D., & Shi, L. (2024). Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Science China Information Sciences, 67(4), 1–17. https://doi.org/10.1007/s11432-023-3821-9

Jia, G., Luo, J., Cui, C., Kou, R., Tian, Y., & Schubert, M. (2023). Valley quantum interference modulated by hyperbolic shear polaritons. Physical Review B, 109(15), 155417. https://doi.org/10.1103/PhysRevB.109.155417

Ullah, N., Khan, M. B., Aloraini, N., & Treanțǎ, S. (2023). Some new estimates of fixed point results under multi-valued mappings in G-metric spaces with application. Symmetry, 15(3), 517. https://doi.org/10.3390/sym15030517

Tian, F., Liu, Z., Zhou, J., Chen, L., & Feng, X. T. (2024). Quantifying post-peak behavior of rocks with type-I, type-II, and mixed fractures by developing a quasi-state-based peridynamics. Rock Mechanics and Rock Engineering, 57(1), 1–37. https://doi.org/10.1007/s00603-023-03688-3

Guo, S., Zuo, X., Wu, W., Yang, X., Zhang, J., Li, Y., ... & Zhu, S. (2024). Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. International Journal of Digital Earth, 17(1), 2316107. https://doi.org/10.1080/17538947.2024.2316107

Guo, J., Liu, Y., Zou, Q., Ye, L., Zhu, S., & Zhang, H. (2023). Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. Journal of Hydrology, 624, 129969. https://doi.org/10.1016/j.jhydrol.2023.129969

Chang, X., Guo, J., Qin, H., Huang, J., Wang, X., & Ren, P. (2024). Single-objective and multi-objective flood interval forecasting considering interval fitting coefficients. Water Resources Management, 38(1), 1–20. https://doi.org/10.1007/s11269-023-03689-5

Lin, Q. (2019). Jensen inequality for superlinear expectations. Statistics & Probability Letters, 151, 79–83. https://doi.org/10.1016/j.spl.2019.03.012

White III, C. C., & Harrington, D. P. (1980). Application of Jensen’s inequality to adaptive suboptimal design. Journal of Optimization Theory and Applications, 32(1), 89–99. https://doi.org/10.1007/BF00934554

Mitrinović, D. S., Pečarić, J. E., & Fink, A. M. (1993). Classical and new inequalities in analysis. Kluwer Academic. https://doi.org/10.1007/978-94-017-1043-5

Mesiar, R., Li, J., & Pap, E. (2010). The Choquet integral as Lebesgue integral and related inequalities. Kybernetika, 46(6), 1098–1107. https://doi.org/10.1007/s00034-010-9215-3

Pap, E., & Štrboja, M. (2010). Generalization of the Jensen inequality for pseudo-integral. Information Sciences, 180(4), 543–548. https://doi.org/10.1016/j.ins.2009.11.012

Pečarić, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Elsevier Science.

Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91(2), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5

Román-Flores, H., Flores-Franulic, A., & Chalco-Cano, Y. (2007). A Jensen type inequality for fuzzy integrals. Information Sciences, 177(15), 3192–3201. https://doi.org/10.1016/j.ins.2007.02.007

Štrboja, M., Grbic, T., Štajner-Papuga, I., Grujic, G., & Medic, S. (2013). Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions. Fuzzy Sets and Systems, 222, 18–32. https://doi.org/10.1016/j.fss.2012.12.004

Wang, R. S. (2011). Some inequalities and convergence theorems for Choquet integral. Journal of Applied Mathematics and Computing, 35(1), 305–321. https://doi.org/10.1007/s12190-010-0389-4

Zhao, X., & Zhang, Q. (2011). Hölder type inequality and Jensen type inequality for Choquet integral. In Knowledge engineering and management: Proceedings of the sixth international conference on intelligent systems and knowledge engineering, Shanghai, China, Dec 2011 (ISKE2011) (pp. 1–10). Springer. https://doi.org/10.1007/978-3-642-25661-5_1

Costa, T. M., & Román-Flores, H. (2017). Some integral inequalities for fuzzy-interval-valued functions. Information Sciences, 420, 110–125. https://doi.org/10.1016/j.ins.2017.08.045

Khan, M. B., Mohammed, P. O., Noor, M. A., & Hamed, Y. S. (2021). New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry, 13(4), 673. https://doi.org/10.3390/sym13040673

Khan, M. B., Mohammed, P. O., Noor, M. A., & Abuahalnaja, K. (2021). Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Mathematical Biosciences and Engineering, 18(6), 6552–6580. https://doi.org/10.3934/mbe.2021325

Zhao, D. F., An, T. Q., Ye, G. J., & Liu, W. (2020). Chebyshev type inequalities for interval-valued functions. Fuzzy Sets and Systems, 396, 82–101. https://doi.org/10.1016/j.fss.2019.07.012

Mesiar, R., Li, J., & Pap, E. (2010). The Choquet integral as Lebesgue integral and related inequalities. Kybernetika, 46(6), 1098–1107. https://doi.org/10.1007/s00034-010-9215-3

Pap, E., & Štrboja, M. (2010). Generalization of the Jensen inequality for pseudo-integral. Information Sciences, 180(4), 543–548. https://doi.org/10.1016/j.ins.2009.11.012

Pečarić, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Elsevier Science.

Puri, M. L., & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91(2), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5

Román-Flores, H., Flores-Franulic, A., & Chalco-Cano, Y. (2007). A Jensen type inequality for fuzzy integrals. Information Sciences, 177(15), 3192–3201. https://doi.org/10.1016/j.ins.2007.02.007

Štrboja, M., Grbic, T., Štajner-Papuga, I., Grujic, G., & Medic, S. (2013). Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions. Fuzzy Sets and Systems, 222, 18–32. https://doi.org/10.1016/j.fss.2012.12.004

Wang, R. S. (2011). Some inequalities and convergence theorems for Choquet integral. Journal of Applied Mathematics and Computing, 35(1), 305–321. https://doi.org/10.1007/s12190-010-0389-4

Zhao, X., & Zhang, Q. (2011). Hölder type inequality and Jensen type inequality for Choquet integral. In Knowledge engineering and management: Proceedings of the sixth international conference on intelligent systems and knowledge engineering, Shanghai, China, Dec 2011 (ISKE2011) (pp. 1–10). Springer. https://doi.org/10.1007/978-3-642-25661-5_1

Costa, T. M., & Román-Flores, H. (2017). Some integral inequalities for fuzzy-interval-valued functions. Information Sciences, 420, 110–125. https://doi.org/10.1016/j.ins.2017.08.045

Khastan, A., & Rodriguez-Lopez, R. (2022). Some aspects on computation of scalar valued and fuzzy valued integrals over fuzzy domains. Iranian Journal of Fuzzy Systems, 19(5), 1–15. https://doi.org/10.22111/ijfs.2022.7217

Khan, M. B., & Guirao, J. L. (2023). Riemann Liouville fractional-like integral operators, convex-like real-valued mappings and their applications over fuzzy domain. Chaos, Solitons & Fractals, 177, 114196. https://doi.org/10.1016/j.chaos.2023.114196

Diamond, P., & Kloeden, P. E. (1994). Metric spaces of fuzzy sets: Theory and applications. World Scientific. https://doi.org/10.1142/2326

Hanss, M. (2005). Applied fuzzy arithmetic: An introduction with engineering applications. Springer Science & Business Media. https://doi.org/10.1007/3-540-32391-0

Goetschel, R., & Voxman, W. (1986). Elementary fuzzy calculus. Fuzzy Sets and Systems, 18(1), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6

Published

2025-03-06

How to Cite

Khan, M. B., & Ciurdariu, L. (2025). Some Refinements of Integral Inequalities over Triangular Fuzzy Co-Domain. Spectrum of Operational Research, 3(1), 1-13. https://doi.org/10.31181/sor31202626