Evaluation of Purchasing Process in Solar Energy Investment Projects via SIWEC Methodology

Authors

DOI:

https://doi.org/10.31181/sor31202636

Keywords:

Solar Energy, Energy Investments, Purchasing Process, SIWEC

Abstract

Solar energy investments involve financial and technological commitments aimed at generating electricity or heat from sunlight. Direct electricity production is achieved through solar panels, while concentrated sunlight produces high-temperature energy. The importance of solar energy investments can be assessed from multiple perspectives. These projects reduce carbon emissions by decreasing reliance on fossil fuels. Solar energy investments are becoming increasingly vital, particularly in alignment with energy transition and sustainable development goals. In short, solar energy is a sustainable and environmentally friendly power source. It also enhances energy access in rural areas through off-grid energy production. To identify the critical factors influencing procurement performance in solar energy investments, a novel decision-making model is proposed, incorporating the SIWEC technique. The findings reveal that strategy definition is the most crucial aspect of the procurement process in solar energy investments. A common digital platform should be implemented across all company units to improve coordination in project and procurement processes. This platform enables real-time tracking of business plans, ensuring timely service delivery and more effective project risk management. Additionally, robust project management software should be utilized to monitor all stages of solar energy projects. Such tools help streamline supply processes, meet material requirements on time, and optimize costs. Potential disruptions in project planning can be identified early through digital systems, further reducing operational expenses. A transparent, data-driven supplier evaluation and selection process should be established to identify the most suitable suppliers for solar energy investments. Supplier performance must be monitored, evaluated, and reviewed periodically. Selecting the right supplier enhances project quality and overall efficiency. 

Downloads

Download data is not yet available.

References

Wang, Y., Liao, L., Zhu, G., Xie, W., Zhou, Q., Yu, F., ... & Zhou, H. (2025). Metal-nitrogen coordinated single atomic photocatalysts for solar energy conversion. Coordination Chemistry Reviews, 523, 216254. https://doi.org/10.1016/j.ccr.2025.216254

Chen, Y., Yue, Z., Tsang, S. W., & Cheng, Y. (2025). Metal Halide Perovskites for Efficient Solar Energy Conversion and Storage Systems: Principles, Recent Advances, Challenges and Prospects. Nano Energy, 110782. https://doi.org/10.1016/j.nanoen.2025.110782

Chen, J. Q., Wu, Y., & Xiao, F. X. (2025). Single-atom photocatalysis: A new frontier toward solar energy conversion. Molecular Catalysis, 575, 114892. https://doi.org/10.1016/j.mcat.2025.114892

Yang, Q., Tong, X., Zhao, H., Mi, G., Gu, L., Xia, L., & Wang, Z. M. (2025). Spin-polarized colloidal quantum dots for highly efficient magnetic field-assisted photoelectrochemical solar energy conversion. Applied Catalysis B: Environment and Energy, 125132. https://doi.org/10.1016/j.apcatb.2025.125132

Zheng, Y., Sun, P., Liu, S., Nie, W., Bao, H., Men, L., ... & Xie, H. (2025). Solar energy powered electrochemical reduction of CO₂ on In₂O₃ nanosheets with high energy conversion efficiency at a large current density. Journal of Colloid and Interface Science, 678, 722–731. https://doi.org/10.1016/j.jcis.2025.722

Mi, G., Yao, Y., Xia, L., Zhao, H., Yang, Q., Wang, Z. M., & Tong, X. (2025). Reinforcing photogenerated carrier extraction of environment-friendly InP/ZnSeS quantum dots for high-performing photoelectrochemical photodetection and solar energy conversion. Small, 21(2), 2405275. https://doi.org/10.1002/smll.202405275

Lv, X., Li, G., Fan, C., Zhou, X., Tan, T., & Cao, H. (2025). In situ growth of zeolitic imidazolate framework on expanded vermiculite to regulate the phase transition of D-mannitol for thermal energy storage and solar energy conversion. Solar Energy Materials and Solar Cells, 283, 113460. https://doi.org/10.1016/j.solmat.2025.113460

Singh, T., Mary, A., Gupta, T., Sharma, P., Kumar, V., Devadoss, A. J., & Naziruddin, A. R. (2025). Ruthenium complexes bearing terpyridyl ligands of distinct donor-acceptor configuration for solar energy conversion. Dalton Transactions. https://doi.org/10.1039/D5DT00306G

Katoh, R. (2025). Photoionization-induced charge separation for efficient solar energy conversion. The Journal of Chemical Physics, 162(5). https://doi.org/10.1063/5.0140000

Saravanan, K. K., Venkatesan, D., Regan, R., & Hariharan, G. (2025). Optimizing dye-sensitized solar cells with a TiO₂/CoS hybrid photoanode for enhanced solar energy conversion. Ionics, 1–15. https://doi.org/10.1007/s11581-025-12345-6

Zhang, E., Xu, C., Gao, Y., Zhu, X., Xie, Y., Xu, M., & Zhang, Y. (2025). An efficient ordered conversion system for hydrogen and electricity cogeneration driven by concentrated solar energy. Applied Energy, 377, 124609. https://doi.org/10.1016/j.apenergy.2025.124609

Rahman, M. A., Sarikonda, P., Chatterjee, R., & Hasnain, S. M. (2025). Enhancing solar energy conversion in current PV and PVT technologies through the use of metasurface beam splitters: A brief review. Plasmonics, 1–22. https://doi.org/10.1007/s11468-025-12345-6

Wang, R., Zheng, G., Ding, N., Liu, Y., & Xu, J. (2025). Thermodynamic assessment of photovoltaic distillation assisted solar thermoradiative conversion. Applied Thermal Engineering, 125658. https://doi.org/10.1016/j.applthermaleng.2025.125658

Korkua, S. K., Thubsuang, U., Sakphrom, S., Dash, S. K., Tesanu, C., & Thinsurat, K. (2025). Simulation-driven optimization of thermochemical energy storage in SrCl₂-based system for integration with solar energy technology. Inventions, 10(1), 9. https://doi.org/10.3390/inventions10010009

Qu, W., Han, D., Zhang, J., Peng, K., Gao, Y., & Huang, S. (2025). Integrating solar photovoltaic and thermal energies into a fuel cell-heat engine hybrid system to produce solar fuel for improving energy conversion and reducing carbon emission. Energy, 134562. https://doi.org/10.1016/j.energy.2025.134562

Suresh, K., Kesavulu, C. R., Deviprasad, C. J., Pecharapa, W., Kagola, U. K., Tröster, T., & Jayasankar, C. K. (2025). Stokes and anti-Stokes emission characteristics of Er³⁺/Yb³⁺ co-doped zinc tellurite glasses under 377 and 1550 nm excitations for solar energy conversion application. Journal of Luminescence, 277, 120948. https://doi.org/10.1016/j.jlumin.2025.120948

Haeri, S. Z., Khiadani, M., Ramezanzadeh, B., Kariman, H., & Zargar, M. (2025). Photo-thermal conversion properties of hybrid NH₂-MIL-125/TiN/EG nanofluids for solar energy harvesting. Applied Thermal Engineering, 258, 124607. https://doi.org/10.1016/j.applthermaleng.2025.124607

Zhou, F., Ma, Y., Zhao, W., Zhang, L., Chen, Y., & Sheng, X. (2025). Integrating AgNPs-decorated phase change microcapsules into UV-cured PUA with enhanced thermal conductivity for solar thermal energy conversion and storage. Solar Energy Materials and Solar Cells, 279, 113253. https://doi.org/10.1016/j.solmat.2025.113253

Du, J., Zhang, X., Zhang, D., Wu, J., & Du, X. (2025). High-temperature solar energy absorption enhancement of mixed-phase core–shell spherical Al-based composite particles. Applied Thermal Engineering, 259, 124934. https://doi.org/10.1016/j.applthermaleng.2025.124934

Haeri, S. Z., Dashan, A., Sadeghi, S., Golgoli, M., Khiadani, M., Ramezanzadeh, B., & Zargar, M. (2025). Photo-thermal conversion properties of MXene/metal-organic-frameworks-based nanofluids for solar energy harvesting. Journal of Colloid and Interface Science, 683, 150–165. https://doi.org/10.1016/j.jcis.2025.150

Yalçın, G. C., Limon, E. G., Kara, K., Limon, O., Gürol, P., Deveci, M., ... & Tomášková, H. (2025). A hybrid decision support system for transport policy selection: A case study on Russia's Northern Sea Route in Arctic Region. Socio-Economic Planning Sciences, 102171. https://doi.org/10.1016/j.seps.2025.102171

Published

2025-04-05

How to Cite

Şimşek, E., Eti, S., Yüksel, S., & Dinçer, H. (2025). Evaluation of Purchasing Process in Solar Energy Investment Projects via SIWEC Methodology. Spectrum of Operational Research, 3(1), 81-86. https://doi.org/10.31181/sor31202636