Evaluation of Purchasing Process in Solar Energy Investment Projects via SIWEC Methodology
DOI:
https://doi.org/10.31181/sor31202636Keywords:
Solar Energy, Energy Investments, Purchasing Process, SIWECAbstract
Solar energy investments involve financial and technological commitments aimed at generating electricity or heat from sunlight. Direct electricity production is achieved through solar panels, while concentrated sunlight produces high-temperature energy. The importance of solar energy investments can be assessed from multiple perspectives. These projects reduce carbon emissions by decreasing reliance on fossil fuels. Solar energy investments are becoming increasingly vital, particularly in alignment with energy transition and sustainable development goals. In short, solar energy is a sustainable and environmentally friendly power source. It also enhances energy access in rural areas through off-grid energy production. To identify the critical factors influencing procurement performance in solar energy investments, a novel decision-making model is proposed, incorporating the SIWEC technique. The findings reveal that strategy definition is the most crucial aspect of the procurement process in solar energy investments. A common digital platform should be implemented across all company units to improve coordination in project and procurement processes. This platform enables real-time tracking of business plans, ensuring timely service delivery and more effective project risk management. Additionally, robust project management software should be utilized to monitor all stages of solar energy projects. Such tools help streamline supply processes, meet material requirements on time, and optimize costs. Potential disruptions in project planning can be identified early through digital systems, further reducing operational expenses. A transparent, data-driven supplier evaluation and selection process should be established to identify the most suitable suppliers for solar energy investments. Supplier performance must be monitored, evaluated, and reviewed periodically. Selecting the right supplier enhances project quality and overall efficiency.
Downloads
References
Wang, Y., Liao, L., Zhu, G., Xie, W., Zhou, Q., Yu, F., ... & Zhou, H. (2025). Metal-nitrogen coordinated single atomic photocatalysts for solar energy conversion. Coordination Chemistry Reviews, 523, 216254. https://doi.org/10.1016/j.ccr.2025.216254
Chen, Y., Yue, Z., Tsang, S. W., & Cheng, Y. (2025). Metal Halide Perovskites for Efficient Solar Energy Conversion and Storage Systems: Principles, Recent Advances, Challenges and Prospects. Nano Energy, 110782. https://doi.org/10.1016/j.nanoen.2025.110782
Chen, J. Q., Wu, Y., & Xiao, F. X. (2025). Single-atom photocatalysis: A new frontier toward solar energy conversion. Molecular Catalysis, 575, 114892. https://doi.org/10.1016/j.mcat.2025.114892
Yang, Q., Tong, X., Zhao, H., Mi, G., Gu, L., Xia, L., & Wang, Z. M. (2025). Spin-polarized colloidal quantum dots for highly efficient magnetic field-assisted photoelectrochemical solar energy conversion. Applied Catalysis B: Environment and Energy, 125132. https://doi.org/10.1016/j.apcatb.2025.125132
Zheng, Y., Sun, P., Liu, S., Nie, W., Bao, H., Men, L., ... & Xie, H. (2025). Solar energy powered electrochemical reduction of CO₂ on In₂O₃ nanosheets with high energy conversion efficiency at a large current density. Journal of Colloid and Interface Science, 678, 722–731. https://doi.org/10.1016/j.jcis.2025.722
Mi, G., Yao, Y., Xia, L., Zhao, H., Yang, Q., Wang, Z. M., & Tong, X. (2025). Reinforcing photogenerated carrier extraction of environment-friendly InP/ZnSeS quantum dots for high-performing photoelectrochemical photodetection and solar energy conversion. Small, 21(2), 2405275. https://doi.org/10.1002/smll.202405275
Lv, X., Li, G., Fan, C., Zhou, X., Tan, T., & Cao, H. (2025). In situ growth of zeolitic imidazolate framework on expanded vermiculite to regulate the phase transition of D-mannitol for thermal energy storage and solar energy conversion. Solar Energy Materials and Solar Cells, 283, 113460. https://doi.org/10.1016/j.solmat.2025.113460
Singh, T., Mary, A., Gupta, T., Sharma, P., Kumar, V., Devadoss, A. J., & Naziruddin, A. R. (2025). Ruthenium complexes bearing terpyridyl ligands of distinct donor-acceptor configuration for solar energy conversion. Dalton Transactions. https://doi.org/10.1039/D5DT00306G
Katoh, R. (2025). Photoionization-induced charge separation for efficient solar energy conversion. The Journal of Chemical Physics, 162(5). https://doi.org/10.1063/5.0140000
Saravanan, K. K., Venkatesan, D., Regan, R., & Hariharan, G. (2025). Optimizing dye-sensitized solar cells with a TiO₂/CoS hybrid photoanode for enhanced solar energy conversion. Ionics, 1–15. https://doi.org/10.1007/s11581-025-12345-6
Zhang, E., Xu, C., Gao, Y., Zhu, X., Xie, Y., Xu, M., & Zhang, Y. (2025). An efficient ordered conversion system for hydrogen and electricity cogeneration driven by concentrated solar energy. Applied Energy, 377, 124609. https://doi.org/10.1016/j.apenergy.2025.124609
Rahman, M. A., Sarikonda, P., Chatterjee, R., & Hasnain, S. M. (2025). Enhancing solar energy conversion in current PV and PVT technologies through the use of metasurface beam splitters: A brief review. Plasmonics, 1–22. https://doi.org/10.1007/s11468-025-12345-6
Wang, R., Zheng, G., Ding, N., Liu, Y., & Xu, J. (2025). Thermodynamic assessment of photovoltaic distillation assisted solar thermoradiative conversion. Applied Thermal Engineering, 125658. https://doi.org/10.1016/j.applthermaleng.2025.125658
Korkua, S. K., Thubsuang, U., Sakphrom, S., Dash, S. K., Tesanu, C., & Thinsurat, K. (2025). Simulation-driven optimization of thermochemical energy storage in SrCl₂-based system for integration with solar energy technology. Inventions, 10(1), 9. https://doi.org/10.3390/inventions10010009
Qu, W., Han, D., Zhang, J., Peng, K., Gao, Y., & Huang, S. (2025). Integrating solar photovoltaic and thermal energies into a fuel cell-heat engine hybrid system to produce solar fuel for improving energy conversion and reducing carbon emission. Energy, 134562. https://doi.org/10.1016/j.energy.2025.134562
Suresh, K., Kesavulu, C. R., Deviprasad, C. J., Pecharapa, W., Kagola, U. K., Tröster, T., & Jayasankar, C. K. (2025). Stokes and anti-Stokes emission characteristics of Er³⁺/Yb³⁺ co-doped zinc tellurite glasses under 377 and 1550 nm excitations for solar energy conversion application. Journal of Luminescence, 277, 120948. https://doi.org/10.1016/j.jlumin.2025.120948
Haeri, S. Z., Khiadani, M., Ramezanzadeh, B., Kariman, H., & Zargar, M. (2025). Photo-thermal conversion properties of hybrid NH₂-MIL-125/TiN/EG nanofluids for solar energy harvesting. Applied Thermal Engineering, 258, 124607. https://doi.org/10.1016/j.applthermaleng.2025.124607
Zhou, F., Ma, Y., Zhao, W., Zhang, L., Chen, Y., & Sheng, X. (2025). Integrating AgNPs-decorated phase change microcapsules into UV-cured PUA with enhanced thermal conductivity for solar thermal energy conversion and storage. Solar Energy Materials and Solar Cells, 279, 113253. https://doi.org/10.1016/j.solmat.2025.113253
Du, J., Zhang, X., Zhang, D., Wu, J., & Du, X. (2025). High-temperature solar energy absorption enhancement of mixed-phase core–shell spherical Al-based composite particles. Applied Thermal Engineering, 259, 124934. https://doi.org/10.1016/j.applthermaleng.2025.124934
Haeri, S. Z., Dashan, A., Sadeghi, S., Golgoli, M., Khiadani, M., Ramezanzadeh, B., & Zargar, M. (2025). Photo-thermal conversion properties of MXene/metal-organic-frameworks-based nanofluids for solar energy harvesting. Journal of Colloid and Interface Science, 683, 150–165. https://doi.org/10.1016/j.jcis.2025.150
Yalçın, G. C., Limon, E. G., Kara, K., Limon, O., Gürol, P., Deveci, M., ... & Tomášková, H. (2025). A hybrid decision support system for transport policy selection: A case study on Russia's Northern Sea Route in Arctic Region. Socio-Economic Planning Sciences, 102171. https://doi.org/10.1016/j.seps.2025.102171
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Enes Şimşek, Serkan Eti, Serhat Yüksel, Hasan Dinçer (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











All site content, except where otherwise noted, is licensed under the