Complex Fuzzy MARCOS and WASPAS Approaches with Z-Numbers for Augmented Reality Decision Making

Authors

  • Aliha Shahid Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan Author
  • Shahzaib Ashraf Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan Author https://orcid.org/0000-0002-8616-8829
  • Muhammad Shakir Chohan Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan Author https://orcid.org/0000-0001-6285-7980

DOI:

https://doi.org/10.31181/sor31202637

Keywords:

Complex fuzzy Z-number, Decision-making, WARPAS method, MARCOS method

Abstract

This study introduces two innovative decision-making methods, MARCOS and WASPAS, based on complex fuzzy Z-number sets. The methodology employs these approaches to evaluate the application of augmented reality (AR) in contemporary society as a case study, highlighting their advantages and nuanced differences. The complex fuzzy Z-number, which integrates Z-number and complex fuzzy set theories, serves as the foundation of this research. The study presents comprehensive flowcharts for both MARCOS and WASPAS, detailing their decision-making processes. A thorough analysis of the results is provided, along with future research directions that emphasize the potential of this methodological framework. The findings contribute to advancing decision-making in AR applications by offering comparative insights using complex fuzzy Z-number sets. Furthermore, the comparison section demonstrates the methodological robustness and validity of the proposed approach.

Downloads

Download data is not yet available.

References

Karsak, E. E. (2002). Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. International Journal of Production Research, 40(13), 3167-3181. https://doi.org/10.1080/00207540210146062

Ashraf, S., Chohan, M. S., Ahmad, S., Hameed, M. S., & Khan, F. (2023). Decision aid algorithm for kidney transplants under disc spherical fuzzy sets with distinctive radii information. IEEE Access, 11, 10418-10431. https://doi.org/10.1109/ACCESS.2023.3240989

Stević, Ž., Subotic, M., Softic, E., & Božić, B. (2022). Multi-criteria decision-making model for evaluating safety of road sections. Journal of Intelligent Management Decision, 1(2), 78-87. https://doi.org/10.56578/jimd010201

Puška, A., & Stojanovic, I. (2022). Fuzzy multi-criteria analyses on green supplier selection in an Agri-food company. Journal of Intelligent Management Decision, 1(1), 2-16. https://doi.org/10.56578/jimd010102

Jana, C., & Pal, M. (2023). Interval-valued picture fuzzy uncertain linguistic Dombi operators and their application in industrial fund selection. Journal of Industrial Intelligence, 1(2), 110-124. https://doi.org/10.56578/jii010204

Zhan, J., Wang, J., Ding, W., & Yao, Y. (2022). Three-way behavioral decision making with hesitant fuzzy information systems: Survey and challenges. IEEE/CAA Journal of Automatica Sinica, 10(2), 330-350. https://doi.org/10.1109/JAS.2022.106061

Rodríguez, R. M., Bedregal, B., Bustince, H., Dong, Y. C., Farhadinia, B., Kahraman, C., ... & Herrera, F. (2016). A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Information Fusion, 29, 89-97. https://doi.org/10.1016/j.inffus.2015.08.004

Ashraf, S., Garg, H., Kousar, M., Askar, S., & Abbas, S. (2023). Simulator selection based on complex probabilistic hesitant fuzzy soft structure using multi-parameters group decision-making. AIMS Mathematics, 8(8), 17765-17802. https://doi.org/10.3934/math.2023909

Guo, L., Zhan, J., & Kou, G. (2024). Consensus reaching process using personalized modification rules in large-scale group decision-making. Information Fusion, 103, 102138. https://doi.org/10.1016/j.inffus.2023.102138

Han, X., Zhan, J., Bao, Y., & Sun, B. (2024). Three-way group consensus with experts' attitudes based on probabilistic linguistic preference relations. Information Sciences, 657, 119919. https://doi.org/10.1016/j.ins.2023.119919

Ma, X., Zhu, J., Kou, G., & Zhan, J. (2024). Consistency improvement and local consensus adjustment for probabilistic linguistic preference relations considering personalized individual semantics. Information Sciences, 662, 120233. https://doi.org/10.1016/j.ins.2024.120233

Han, X., Zhan, J., Xu, Z., & Mart, L. (2024). Trust risk test-based group consensus with probabilistic linguistic preference relations under social networks. IEEE Transactions on Fuzzy Systems.

Ahmad, Q. A., Ashraf, S., Chohan, M. S., Batool, B., & Qiang, M. L. (2024). Extended CSF-CoCoSo method: A novel approach for optimizing logistics in the oil and gas supply chain. IEEE Access, 12, 12345-12360.

Chohan, M. S., Ashraf, S., & Dong, K. (2023). Enhanced forecasting of Alzheimer's disease progression using higher-order circular Pythagorean fuzzy time series. Healthcraft Frontiers, 1(1), 44-57.

Qiu, Y. J., Bouraima, M. B., Kiptum, C. K., Ayyildiz, E., Stević, Ž., Badi, I., & Ndiema, K. M. (2023). Strategies for enhancing Industry 4.0 adoption in East Africa: An integrated spherical fuzzy SWARA-WASPAS approach. Journal of Industrial Intelligence, 1(2), 87-100. https://doi.org/10.56578/jii010202

Ashraf, S., Chohan, M. S., Muhammad, S., & Khan, F. (2023). Circular intuitionistic fuzzy TODIM approach for material selection for cryogenic storage tank for liquid nitrogen transportation. IEEE Access, 11, 5678-5692. https://doi.org/10.1109/ACCESS.2023.3236543

Ashraf, S., Chohan, M. S., Askar, S., & Jabbar, N. (2024). q-Rung Orthopair fuzzy time series forecasting technique: Prediction based decision making. AIMS Mathematics, 9(3), 5633-5660. https://doi.org/10.3934/math.2024275

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Chou, T. Y., Seng-cho, T. C., & Tzeng, G. H. (2006). Evaluating IT/IS investments: A fuzzy multi-criteria decision model approach. European Journal of Operational Research, 173(3), 1026-1046. https://doi.org/10.1016/j.ejor.2005.07.006

Fan, Z. P., & Feng, B. (2009). A multiple attributes decision-making method using individual and collaborative attribute data in a fuzzy environment. Information Sciences, 179(20), 3603-3618. https://doi.org/10.1016/j.ins.2009.07.001

Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets. In Intuitionistic fuzzy sets: Theory and applications (pp. 139-177). Springer.

Xiao, Y., Zhan, J., Zhang, C., & Wu, W. Z. (2023). Three-way decision method within prospect theory via intuitionistic fuzzy numbers in multi-scale decision information systems. IEEE Transactions on Fuzzy Systems, 31(12), 4123-4136. https://doi.org/10.1109/TFUZZ.2023.3286784

Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 10(2), 171-186. https://doi.org/10.1109/91.995119

Ramot, D., Friedman, M., Langholz, G., & Kandel, A. (2003). Complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 11(4), 450-461. https://doi.org/10.1109/TFUZZ.2003.814832

Nguyen, H. T., Kandel, A., & Kreinovich, V. (2000). Complex fuzzy sets: Towards new foundations. In Proceedings of the 9th IEEE International Conference on Fuzzy Systems (Vol. 2, pp. 1045-1048). IEEE.

Dick, S. (2005). Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 13(3), 405-414. https://doi.org/10.1109/TFUZZ.2004.841734

Zadeh, L. A. (2011). A note on Z-numbers. Information Sciences, 181(14), 2923-2932. https://doi.org/10.1016/j.ins.2011.02.022

Yazdanbakhsh, O., & Dick, S. (2018). A systematic review of complex fuzzy sets and logic. Fuzzy Sets and Systems, 338, 1-22. https://doi.org/10.1016/j.fss.2017.01.010

Jafari, R., Yu, W., & Li, X. (2017). Numerical solution of fuzzy equations with Z-numbers using neural networks. Intelligent Automation & Soft Computing, 23(3), 565-571.

Bakar, A. S. A., & Gegov, A. (2015). Multi-layer decision methodology for ranking Z-numbers. International Journal of Computational Intelligence Systems, 8(2), 395-406. https://doi.org/10.1080/18756891.2015.1001956

Jiang, W., Xie, C., Luo, Y., & Tang, Y. (2017). Ranking Z-numbers with an improved ranking method for generalized fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 32(3), 1931-1943. https://doi.org/10.3233/JIFS-16169

Jafari, R., Yu, W., & Li, X. (2017). Numerical solution of fuzzy equations with Z-numbers using neural networks. Intelligent Automation & Soft Computing, 23(3), 565-571.

Kang, B., Wei, D., Li, Y., & Deng, Y. (2012). Decision making using Z-numbers under uncertain environment. Journal of Computational Information Systems, 8(7), 2807-2814.

Aliev, R. A., Pedrycz, W., & Huseynov, O. H. (2018). Hukuhara difference of Z-numbers. Information Sciences, 466, 13-24. https://doi.org/10.1016/j.ins.2018.07.019

Ashraf, S., Chohan, M. S., Muhammad, S., & Khan, F. (2023). Circular intuitionistic fuzzy TODIM approach for material selection for cryogenic storage tank for liquid nitrogen transportation. IEEE Access, 11, 5678-5692. https://doi.org/10.1109/ACCESS.2023.3236543

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 122(6), 3-6. https://doi.org/10.5755/j01.eee.122.6.1810

Puška, A., Stević, Ž., & Stojanović, I. (2021). Selection of sustainable suppliers using the fuzzy MARCOS method. Current Chinese Science, 1(2), 218-229. https://doi.org/10.2174/2210298101999200813165801

Dhumras, H., & Bajaj, R. K. (2024). On potential strategic framework for green supply chain management in the energy sector using q-rung picture fuzzy AHP & WASPAS decision-making model. Expert Systems with Applications, 237, 121550. https://doi.org/10.1016/j.eswa.2023.121550

Kalita, K., Ganesh, N., Shankar, R., & Chakraborty, S. (2023). A fuzzy MARCOS-based analysis of dragonfly algorithm variants in industrial optimization problems. Informatica, 47(1), 1-24.

Hu, B., Bi, L., Dai, S., & Li, S. (2018). Distances of complex fuzzy sets and continuity of complex fuzzy operations. Journal of Intelligent & Fuzzy Systems, 35(2), 2247-2255. https://doi.org/10.3233/JIFS-169689

Fang, H., Mahmood, T., Ali, Z., Zeng, S., & Jin, Y. (2023). WASPAS method and Aczel-Alsina aggregation operators for managing complex interval-valued intuitionistic fuzzy information and their applications in decision-making. PeerJ Computer Science, 9, e1362. https://doi.org/10.7717/peerj-cs.1362

Turskis, Z., Zavadskas, E. K., Antucheviciene, J., & Kosareva, N. (2015). A hybrid model based on fuzzy AHP and fuzzy WASPAS for construction site selection. International Journal of Computers Communications & Control, 10(6), 873-888.

Ali, J. (2022). A q-rung orthopair fuzzy MARCOS method using novel score function and its application to solid waste management. Applied Intelligence, 52(8), 8770-8792. https://doi.org/10.1007/s10489-021-02915-0

Ali, J. (2021). A novel score function based CRITIC-MARCOS method with spherical fuzzy information. Computational and Applied Mathematics, 40(8), 280. https://doi.org/10.1007/s40314-021-01668-3

El-Araby, A. (2023). The utilization of MARCOS method for different engineering applications: A comparative study. International Journal of Research in Industrial Engineering, 12(2), 155-164.

Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385. https://doi.org/10.1162/pres.1997.6.4.355

Ashraf, S., Akram, M., Jana, C., Jin, L. S., & Pamucar, D. (2024). Multi-criteria assessment of climate change due to green house effect based on Sugeno Weber model under spherical fuzzy Z-numbers. Information Sciences, 666, 120428. https://doi.org/10.1016/j.ins.2024.120428

Omerali, M., & Kaya, T. (2022). Augmented reality application selection framework using spherical fuzzy COPRAS multi criteria decision making. Cogent Engineering, 9(1), 2020610. https://doi.org/10.1080/23311916.2021.2020610

Published

2025-03-25

How to Cite

Shahid, A., Ashraf, S., & Chohan, M. S. (2025). Complex Fuzzy MARCOS and WASPAS Approaches with Z-Numbers for Augmented Reality Decision Making. Spectrum of Operational Research, 3(1), 40-62. https://doi.org/10.31181/sor31202637