Stochastic Models for Autonomous Systems and Robotics

Authors

DOI:

https://doi.org/10.31181/sor31202647

Keywords:

Stochastic Modeling, Autonomous Systems, Decision-Making, Navigation, Kalman Filters, Monte Carlo Localization

Abstract

The field of robotics is rapidly evolving with the development of autonomous systems capable of operating in dynamic and uncertain environments. A key challenge is ensuring that these systems can reliably make decisions and execute tasks despite inherent uncertainties. Stochastic modeling provides a crucial mathematical framework to address these uncertainties by incorporating randomness and variability in system behavior and external conditions. This paper explores the role of stochastic models in autonomous systems, particularly in navigation, decision-making, and task execution, and how they integrate with artificial intelligence and machine learning to enhance system robustness and adaptability. A case study on autonomous vehicles (AVs) demonstrates the application of stochastic models, highlighting the use of Markov Decision Processes (MDPs) for path planning, Kalman filters for sensor fusion, and Monte Carlo methods for probabilistic localization. Through detailed mathematical and computational analyses, we show how these stochastic methods help AVs navigate uncertain urban environments, improving decision-making and overall system performance.

Downloads

Download data is not yet available.

References

Lestingi, L., Zerla, D., Bersani, M. M., & Rossi, M. (2023). Specification, stochastic modeling and analysis of interactive service robotic applications. Robotics and Autonomous Systems, 163, 104387. https://doi.org/10.1016/j.robot.2023.104387

Araujo, H., Mousavi, M. R., & Varshosaz, M. (2023). Testing, validation, and verification of robotic and autonomous systems: A systematic review. ACM Transactions on Software Engineering and Methodology, 32(2), 1–61. https://doi.org/10.1145/3542945

Bao, H., Kang, Q., Shi, X., Zhou, M., Li, H., An, J., & Sedraoui, K. (2023). Moment-based model predictive control of autonomous systems. IEEE Transactions on Intelligent Vehicles, 8(4), 2939–2953. https://doi.org/10.1109/TIV.2023.3238023

Vesentini, F., Di Persio, L., & Muradore, R. (2023). A Brownian–Markov stochastic model for cart-like wheeled mobile robots. European Journal of Control, 70, 100771. https://doi.org/10.1016/j.ejcon.2022.100771

Knaup, J., Okamoto, K., & Tsiotras, P. (2023). Safe high-performance autonomous off-road driving using covariance steering stochastic model predictive control. IEEE Transactions on Control Systems Technology. https://doi.org/10.1109/TCST.2023.3291570

Tatari, F., & Modares, H. (2023). Deterministic and stochastic fixed-time stability of discrete-time autonomous systems. IEEE/CAA Journal of Automatica Sinica, 10(4), 945–956. https://doi.org/10.1109/JAS.2023.123405

Vincent, J. A., Feldman, A. O., & Schwager, M. (2024). Guarantees on robot system performance using stochastic simulation rollouts. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2024.3444070

Hsu, K. C., Hu, H., & Fisac, J. F. (2023). The safety filter: A unified view of safety-critical control in autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems, 7. https://doi.org/10.1146/annurev-control-071723-102940

Landgraf, D., Völz, A., Berkel, F., Schmidt, K., Specker, T., & Graichen, K. (2023). Probabilistic prediction methods for nonlinear systems with application to stochastic model predictive control. Annual Review of Control, 56, 100905. https://doi.org/10.1016/j.arcontrol.2023.100905

Bensaci, C., Zennir, Y., Pomorski, D., Innal, F., & Lundteigen, M. A. (2023). Collision hazard modeling and analysis in a multi-mobile robots system transportation task with STPA and SPN. Reliability Engineering & System Safety, 234, 109138. https://doi.org/10.1016/j.ress.2023.109138

Brüdigam, T., Olbrich, M., Wollherr, D., & Leibold, M. (2021). Stochastic model predictive control with a safety guarantee for automated driving. IEEE Transactions on Intelligent Vehicles, 8(1), 22–36. https://doi.org/10.1109/TIV.2021.3074645

Duan, X., & Bullo, F. (2021). Markov chain–based stochastic strategies for robotic surveillance. Annual Review of Control, Robotics, and Autonomous Systems, 4(1), 243–264. https://doi.org/10.1146/annurev-control-071520-120123

Chen, J., & Shi, Y. (2021). Stochastic model predictive control framework for resilient cyber-physical systems: Review and perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2207), 20200371. https://doi.org/10.1098/rsta.2020.0371

Neghab, H. K., Jamshidi, M., & Neghab, H. K. (2022). Digital twin of a magnetic medical microrobot with stochastic model predictive controller boosted by machine learning in cyber-physical healthcare systems. Information, 13(7), 321. https://doi.org/10.3390/info13070321

Zare, A., Georgiou, T. T., & Jovanović, M. R. (2020). Stochastic dynamical modeling of turbulent flows. Annual Review of Control, Robotics, and Autonomous Systems, 3(1), 195–219. https://doi.org/10.1146/annurev-control-053018-023843

Nakka, Y. K., & Chung, S. J. (2022). Trajectory optimization of chance-constrained nonlinear stochastic systems for motion planning under uncertainty. IEEE Transactions on Robotics, 39(1), 203–222. https://doi.org/10.1109/TRO.2022.3197072

Cardoso, R. C., Kourtis, G., Dennis, L. A., Dixon, C., Farrell, M., Fisher, M., & Webster, M. (2021). A review of verification and validation for space autonomous systems. Current Robotics Reports, 2(3), 273–283. https://doi.org/10.1007/s43154-021-00058-1

Mwaffo, V., DeLellis, P., & Humbert, J. S. (2021). Formation control of stochastic multivehicle systems. IEEE Transactions on Control Systems Technology, 29(6), 2505–2516. https://doi.org/10.1109/TCST.2020.3047422

Goswami, S. S., Behera, D. K., Afzal, A., Kaladgi, A. R., Khan, S. A., Rajendran, P., Subbiah, R., & Asif, M. (2021). Analysis of a robot selection problem using two newly developed hybrid MCDM models of TOPSIS-ARAS and COPRAS-ARAS. Symmetry, 13(8), 1331. https://doi.org/10.3390/sym13081331

Goswami, S. S., & Behera, D. K. (2021). Solving material handling equipment selection problems in an industry with the help of entropy integrated COPRAS and ARAS MCDM techniques. Process Integration and Optimization for Sustainability, 5(4), 947–973. https://doi.org/10.1007/s41660-021-00192-5

Goswami, S. S., & Behera, D. K. (2023). Developing fuzzy-AHP-integrated hybrid MCDM system of COPRAS-ARAS for solving an industrial robot selection problem. International Journal of Decision Support System Technology, 15(1), 1–38. http://doi.org/10.4018/IJDSST.324599

Mondal, S., & Goswami, S. S. (2024). Machine learning applications in automotive engineering: Enhancing vehicle safety and performance. Journal of Process Management and New Technologies, 12(1–2), 61–71. https://doi.org/10.5937/jpmnt12-50607

Jiang, B., Karimi, H. R., Yang, S., Gao, C., & Kao, Y. (2020). Observer-based adaptive sliding mode control for nonlinear stochastic Markov jump systems via T–S fuzzy modeling: Applications to robot arm model. IEEE Transactions on Industrial Electronics, 68(1), 466–477. https://doi.org/10.1109/TIE.2020.2965501

Mattila, R., Rojas, C. R., Krishnamurthy, V., & Wahlberg, B. (2020). Inverse filtering for hidden Markov models with applications to counter-adversarial autonomous systems. IEEE Transactions on Signal Processing, 68, 4987–5002. https://doi.org/10.1109/TSP.2020.3019177

Zhang, Q., & Zhou, Y. (2022). Recent advances in non-Gaussian stochastic systems control theory and its applications. International Journal of Network Dynamics and Intelligence, 111–119. https://doi.org/10.53941/ijndi0101010

Liu, L., Feng, S., Feng, Y., Zhu, X., & Liu, H. X. (2022). Learning-based stochastic driving model for autonomous vehicle testing. Transportation Research Record, 2676(1), 54–64. https://doi.org/10.1177/03611981211035756

Stojanovic, V., He, S., & Zhang, B. (2020). State and parameter joint estimation of linear stochastic systems in presence of faults and non‐Gaussian noises. International Journal of Robust and Nonlinear Control, 30(16), 6683–6700. https://doi.org/10.1002/rnc.5131

Umlauft, J., & Hirche, S. (2020). Learning stochastically stable Gaussian process state–space models. IFAC Journal of Systems and Control, 12, 100079. https://doi.org/10.1016/j.ifacsc.2020.100079

Wang, A., Jasour, A., & Williams, B. C. (2020). Non-gaussian chance-constrained trajectory planning for autonomous vehicles under agent uncertainty. IEEE Robotics and Automation Letters, 5(4), 6041–6048. https://doi.org/10.1109/LRA.2020.3010755

Kurniawati, H. (2022). Partially observable Markov decision processes and robotics. Annual Review of Control, Robotics, and Autonomous Systems, 5(1), 253–277. https://doi.org/10.1146/annurev-control-042920-092451

Lavaei, A., Soudjani, S., Abate, A., & Zamani, M. (2022). Automated verification and synthesis of stochastic hybrid systems: A survey. Automatica, 146, 110617. https://doi.org/10.1016/j.automatica.2022.110617

Wang, Y., & Chapman, M. P. (2022). Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control. Artificial Intelligence, 311, 103743. https://doi.org/10.1016/j.artint.2022.103743

Karpas, E., & Magazzeni, D. (2020). Automated planning for robotics. Annual Review of Control, Robotics, and Autonomous Systems, 3(1), 417–439. https://doi.org/10.1146/annurev-control-082619-100135

Shaheen, K., Hanif, M. A., Hasan, O., & Shafique, M. (2022). Continual learning for real-world autonomous systems: Algorithms, challenges and frameworks. Journal of Intelligent and Robotic Systems, 105(1), 9. https://doi.org/10.1007/s10846-022-01603-6

Poveda, J. I., Benosman, M., Teel, A. R., & Sanfelice, R. G. (2021). Robust coordinated hybrid source seeking with obstacle avoidance in multivehicle autonomous systems. IEEE Transactions on Automatic Control, 67(2), 706–721. https://doi.org/10.1109/TAC.2021.3056365

Shi, Y., & Zhang, K. (2021). Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Review of Control, 52, 170–196. https://doi.org/10.1016/j.arcontrol.2021.10.008

Berberich, J., & Allgöwer, P. (2024). An overview of systems-theoretic guarantees in data-driven model predictive control. Annual Review of Control, Robotics, and Autonomous Systems, 8. https://doi.org/10.1146/annurev-control-030323-024328

Mitchell, D., Blanche, J., Zaki, O., Roe, J., Kong, L., Harper, S., Robu, V., Lim, T., & Flynn, D. (2021). Symbiotic system of systems design for safe and resilient autonomous robotics in offshore wind farms. IEEE Access, 9, 141421–141452. https://doi.org/10.1109/ACCESS.2021.3117727

Zhang, X., Li, Y., Ran, Y., & Zhang, G. (2020). Stochastic models for performance analysis of multistate flexible manufacturing cells. Journal of Manufacturing Systems, 55, 94–108. https://doi.org/10.1016/j.jmsy.2020.02.013

Lauri, M., Hsu, D., & Pajarinen, J. (2022). Partially observable Markov decision processes in robotics: A survey. IEEE Transactions on Robotics, 39(1), 21–40. https://doi.org/10.1109/TRO.2022.3200138

Chen, Y., Georgiou, T. T., & Pavon, M. (2021). Optimal transport in systems and control. Annual Review of Control, Robotics, and Autonomous Systems, 4(1), 89–113. https://doi.org/10.1146/annurev-control-070220-100858

Published

2025-05-24

How to Cite

Goswami, S. S., & Mondal, S. (2025). Stochastic Models for Autonomous Systems and Robotics. Spectrum of Operational Research, 3(1), 215-237. https://doi.org/10.31181/sor31202647