Stochastic Models for Autonomous Systems and Robotics
DOI:
https://doi.org/10.31181/sor31202647Keywords:
Stochastic Modeling, Autonomous Systems, Decision-Making, Navigation, Kalman Filters, Monte Carlo LocalizationAbstract
The field of robotics is rapidly evolving with the development of autonomous systems capable of operating in dynamic and uncertain environments. A key challenge is ensuring that these systems can reliably make decisions and execute tasks despite inherent uncertainties. Stochastic modeling provides a crucial mathematical framework to address these uncertainties by incorporating randomness and variability in system behavior and external conditions. This paper explores the role of stochastic models in autonomous systems, particularly in navigation, decision-making, and task execution, and how they integrate with artificial intelligence and machine learning to enhance system robustness and adaptability. A case study on autonomous vehicles (AVs) demonstrates the application of stochastic models, highlighting the use of Markov Decision Processes (MDPs) for path planning, Kalman filters for sensor fusion, and Monte Carlo methods for probabilistic localization. Through detailed mathematical and computational analyses, we show how these stochastic methods help AVs navigate uncertain urban environments, improving decision-making and overall system performance.
Downloads
References
Lestingi, L., Zerla, D., Bersani, M. M., & Rossi, M. (2023). Specification, stochastic modeling and analysis of interactive service robotic applications. Robotics and Autonomous Systems, 163, 104387. https://doi.org/10.1016/j.robot.2023.104387
Araujo, H., Mousavi, M. R., & Varshosaz, M. (2023). Testing, validation, and verification of robotic and autonomous systems: A systematic review. ACM Transactions on Software Engineering and Methodology, 32(2), 1–61. https://doi.org/10.1145/3542945
Bao, H., Kang, Q., Shi, X., Zhou, M., Li, H., An, J., & Sedraoui, K. (2023). Moment-based model predictive control of autonomous systems. IEEE Transactions on Intelligent Vehicles, 8(4), 2939–2953. https://doi.org/10.1109/TIV.2023.3238023
Vesentini, F., Di Persio, L., & Muradore, R. (2023). A Brownian–Markov stochastic model for cart-like wheeled mobile robots. European Journal of Control, 70, 100771. https://doi.org/10.1016/j.ejcon.2022.100771
Knaup, J., Okamoto, K., & Tsiotras, P. (2023). Safe high-performance autonomous off-road driving using covariance steering stochastic model predictive control. IEEE Transactions on Control Systems Technology. https://doi.org/10.1109/TCST.2023.3291570
Tatari, F., & Modares, H. (2023). Deterministic and stochastic fixed-time stability of discrete-time autonomous systems. IEEE/CAA Journal of Automatica Sinica, 10(4), 945–956. https://doi.org/10.1109/JAS.2023.123405
Vincent, J. A., Feldman, A. O., & Schwager, M. (2024). Guarantees on robot system performance using stochastic simulation rollouts. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2024.3444070
Hsu, K. C., Hu, H., & Fisac, J. F. (2023). The safety filter: A unified view of safety-critical control in autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems, 7. https://doi.org/10.1146/annurev-control-071723-102940
Landgraf, D., Völz, A., Berkel, F., Schmidt, K., Specker, T., & Graichen, K. (2023). Probabilistic prediction methods for nonlinear systems with application to stochastic model predictive control. Annual Review of Control, 56, 100905. https://doi.org/10.1016/j.arcontrol.2023.100905
Bensaci, C., Zennir, Y., Pomorski, D., Innal, F., & Lundteigen, M. A. (2023). Collision hazard modeling and analysis in a multi-mobile robots system transportation task with STPA and SPN. Reliability Engineering & System Safety, 234, 109138. https://doi.org/10.1016/j.ress.2023.109138
Brüdigam, T., Olbrich, M., Wollherr, D., & Leibold, M. (2021). Stochastic model predictive control with a safety guarantee for automated driving. IEEE Transactions on Intelligent Vehicles, 8(1), 22–36. https://doi.org/10.1109/TIV.2021.3074645
Duan, X., & Bullo, F. (2021). Markov chain–based stochastic strategies for robotic surveillance. Annual Review of Control, Robotics, and Autonomous Systems, 4(1), 243–264. https://doi.org/10.1146/annurev-control-071520-120123
Chen, J., & Shi, Y. (2021). Stochastic model predictive control framework for resilient cyber-physical systems: Review and perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2207), 20200371. https://doi.org/10.1098/rsta.2020.0371
Neghab, H. K., Jamshidi, M., & Neghab, H. K. (2022). Digital twin of a magnetic medical microrobot with stochastic model predictive controller boosted by machine learning in cyber-physical healthcare systems. Information, 13(7), 321. https://doi.org/10.3390/info13070321
Zare, A., Georgiou, T. T., & Jovanović, M. R. (2020). Stochastic dynamical modeling of turbulent flows. Annual Review of Control, Robotics, and Autonomous Systems, 3(1), 195–219. https://doi.org/10.1146/annurev-control-053018-023843
Nakka, Y. K., & Chung, S. J. (2022). Trajectory optimization of chance-constrained nonlinear stochastic systems for motion planning under uncertainty. IEEE Transactions on Robotics, 39(1), 203–222. https://doi.org/10.1109/TRO.2022.3197072
Cardoso, R. C., Kourtis, G., Dennis, L. A., Dixon, C., Farrell, M., Fisher, M., & Webster, M. (2021). A review of verification and validation for space autonomous systems. Current Robotics Reports, 2(3), 273–283. https://doi.org/10.1007/s43154-021-00058-1
Mwaffo, V., DeLellis, P., & Humbert, J. S. (2021). Formation control of stochastic multivehicle systems. IEEE Transactions on Control Systems Technology, 29(6), 2505–2516. https://doi.org/10.1109/TCST.2020.3047422
Goswami, S. S., Behera, D. K., Afzal, A., Kaladgi, A. R., Khan, S. A., Rajendran, P., Subbiah, R., & Asif, M. (2021). Analysis of a robot selection problem using two newly developed hybrid MCDM models of TOPSIS-ARAS and COPRAS-ARAS. Symmetry, 13(8), 1331. https://doi.org/10.3390/sym13081331
Goswami, S. S., & Behera, D. K. (2021). Solving material handling equipment selection problems in an industry with the help of entropy integrated COPRAS and ARAS MCDM techniques. Process Integration and Optimization for Sustainability, 5(4), 947–973. https://doi.org/10.1007/s41660-021-00192-5
Goswami, S. S., & Behera, D. K. (2023). Developing fuzzy-AHP-integrated hybrid MCDM system of COPRAS-ARAS for solving an industrial robot selection problem. International Journal of Decision Support System Technology, 15(1), 1–38. http://doi.org/10.4018/IJDSST.324599
Mondal, S., & Goswami, S. S. (2024). Machine learning applications in automotive engineering: Enhancing vehicle safety and performance. Journal of Process Management and New Technologies, 12(1–2), 61–71. https://doi.org/10.5937/jpmnt12-50607
Jiang, B., Karimi, H. R., Yang, S., Gao, C., & Kao, Y. (2020). Observer-based adaptive sliding mode control for nonlinear stochastic Markov jump systems via T–S fuzzy modeling: Applications to robot arm model. IEEE Transactions on Industrial Electronics, 68(1), 466–477. https://doi.org/10.1109/TIE.2020.2965501
Mattila, R., Rojas, C. R., Krishnamurthy, V., & Wahlberg, B. (2020). Inverse filtering for hidden Markov models with applications to counter-adversarial autonomous systems. IEEE Transactions on Signal Processing, 68, 4987–5002. https://doi.org/10.1109/TSP.2020.3019177
Zhang, Q., & Zhou, Y. (2022). Recent advances in non-Gaussian stochastic systems control theory and its applications. International Journal of Network Dynamics and Intelligence, 111–119. https://doi.org/10.53941/ijndi0101010
Liu, L., Feng, S., Feng, Y., Zhu, X., & Liu, H. X. (2022). Learning-based stochastic driving model for autonomous vehicle testing. Transportation Research Record, 2676(1), 54–64. https://doi.org/10.1177/03611981211035756
Stojanovic, V., He, S., & Zhang, B. (2020). State and parameter joint estimation of linear stochastic systems in presence of faults and non‐Gaussian noises. International Journal of Robust and Nonlinear Control, 30(16), 6683–6700. https://doi.org/10.1002/rnc.5131
Umlauft, J., & Hirche, S. (2020). Learning stochastically stable Gaussian process state–space models. IFAC Journal of Systems and Control, 12, 100079. https://doi.org/10.1016/j.ifacsc.2020.100079
Wang, A., Jasour, A., & Williams, B. C. (2020). Non-gaussian chance-constrained trajectory planning for autonomous vehicles under agent uncertainty. IEEE Robotics and Automation Letters, 5(4), 6041–6048. https://doi.org/10.1109/LRA.2020.3010755
Kurniawati, H. (2022). Partially observable Markov decision processes and robotics. Annual Review of Control, Robotics, and Autonomous Systems, 5(1), 253–277. https://doi.org/10.1146/annurev-control-042920-092451
Lavaei, A., Soudjani, S., Abate, A., & Zamani, M. (2022). Automated verification and synthesis of stochastic hybrid systems: A survey. Automatica, 146, 110617. https://doi.org/10.1016/j.automatica.2022.110617
Wang, Y., & Chapman, M. P. (2022). Risk-averse autonomous systems: A brief history and recent developments from the perspective of optimal control. Artificial Intelligence, 311, 103743. https://doi.org/10.1016/j.artint.2022.103743
Karpas, E., & Magazzeni, D. (2020). Automated planning for robotics. Annual Review of Control, Robotics, and Autonomous Systems, 3(1), 417–439. https://doi.org/10.1146/annurev-control-082619-100135
Shaheen, K., Hanif, M. A., Hasan, O., & Shafique, M. (2022). Continual learning for real-world autonomous systems: Algorithms, challenges and frameworks. Journal of Intelligent and Robotic Systems, 105(1), 9. https://doi.org/10.1007/s10846-022-01603-6
Poveda, J. I., Benosman, M., Teel, A. R., & Sanfelice, R. G. (2021). Robust coordinated hybrid source seeking with obstacle avoidance in multivehicle autonomous systems. IEEE Transactions on Automatic Control, 67(2), 706–721. https://doi.org/10.1109/TAC.2021.3056365
Shi, Y., & Zhang, K. (2021). Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Review of Control, 52, 170–196. https://doi.org/10.1016/j.arcontrol.2021.10.008
Berberich, J., & Allgöwer, P. (2024). An overview of systems-theoretic guarantees in data-driven model predictive control. Annual Review of Control, Robotics, and Autonomous Systems, 8. https://doi.org/10.1146/annurev-control-030323-024328
Mitchell, D., Blanche, J., Zaki, O., Roe, J., Kong, L., Harper, S., Robu, V., Lim, T., & Flynn, D. (2021). Symbiotic system of systems design for safe and resilient autonomous robotics in offshore wind farms. IEEE Access, 9, 141421–141452. https://doi.org/10.1109/ACCESS.2021.3117727
Zhang, X., Li, Y., Ran, Y., & Zhang, G. (2020). Stochastic models for performance analysis of multistate flexible manufacturing cells. Journal of Manufacturing Systems, 55, 94–108. https://doi.org/10.1016/j.jmsy.2020.02.013
Lauri, M., Hsu, D., & Pajarinen, J. (2022). Partially observable Markov decision processes in robotics: A survey. IEEE Transactions on Robotics, 39(1), 21–40. https://doi.org/10.1109/TRO.2022.3200138
Chen, Y., Georgiou, T. T., & Pavon, M. (2021). Optimal transport in systems and control. Annual Review of Control, Robotics, and Autonomous Systems, 4(1), 89–113. https://doi.org/10.1146/annurev-control-070220-100858
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shankha Shubhra Goswami, Surajit Mondal (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.











All site content, except where otherwise noted, is licensed under the