On the Anticancer Drug Structures and Their Locating Numbers

Authors

DOI:

https://doi.org/10.31181/sor1120245

Keywords:

Anticancer Drug Structures, Vertex Metric Dimension, Locating Number, Locating Set

Abstract

Cancer is the fast proliferation of unwanted cells in the body. Carcinogens are chemicals that can cause cancer. A carcinogen is a kind of chemical compound found in cigarette smoke. It has the ability to spread to many places in the body. Some of the signs and symptoms of this sickness include a lump, irregular bleeding, a chronic cough, weight gain or loss, and so on. Tobacco chewing is a major factor in this deadly disease. Obesity, a poor diet, laziness, and increased alcohol usage are all factors. Anticancer drugs are being utilized to treat this condition. In this work, we studied some anticancer medicines in terms of locating set, where locating set is a set to settle the entire atom set of a graph into a unique way to access each atom independently. By locating numbers, a particular resolving set is chosen and this resolving set or locating set creates the entire structure into a unique form this helps to study the chemical structure in more depth and detail. So, we can say that locating number helps to understand the chemical structure in more detail and depth. Locating number is a part of resolvability parameters and it also plays a role in developing a unique way to access each node/vertex of a network. When each of its vertices is easily accessible with a unique code, working on a network becomes easy. So this method makes structures of anticancer disease easily understandable and researchers can easily extend working on these structures in medical diagnostics.

Downloads

Download data is not yet available.

References

Figuerola, B., & Avila, C. (2019). The phylum bryozoa as a promising source of anticancer drugs. Marine Drugs, 17(8), 477. https://doi.org/10.3390/md17080477

Gao, W., Wang, W. F., & Farahani M. R. (2016). Topological indices study of molecular structure in anticancer drugs. Journal of Chemistry, 2016(1), 3216327. https://doi.org/10.1155/2016/3216327

Kumar, S., Ahmad, M. K., Waseem, M., & Pandey A. K. (2015). Drug targets for cancer treatment: an overview. Medicinal Chemistry, 5(3), 115-123. https://doi.org/10.4172/2161-0444.1000252

Khabyah, A. A., Jamil, M. K., Koam, A. N. A., Javed, A., & Azeem M. (2022). Partition dimension of COVID antiviral drug structures. Mathematical Biosciences and Engineering, 19(10), 10078-10095. https://doi.org/10.3934/mbe.2022471

Shanmukha, M. C., Basavarajappa, N. S., Shilpa, K. C, &. Usha A. (2020). Degree-based topological indices on anticancer drugs with QSPR analysis. Heliyon, 6(6), Е04235. https://doi.org/10.1016/j.heliyon.2020.e04235

Azeem, M., Jamil, M. K., Javed, A., & Ahmad, A. (2022). Verification of Some Topological Indices of Y‐Junction Based Nanostructures by M‐Polynomials. Journal of Mathematics, 2022(1), 8238651. https://doi.org/10.1155/2022/8238651

Azeem, M., Imran, M., & Nadeem, M. F. (2022). Sharp bounds on partition dimension of hexagonal Möbius ladder. Journal of King Saud University-Science, 34(2), 101779. https://doi.org/10.1016/j.jksus.2021.101779

Azeem, M., Anwar, S., Jamil, M. K., Saeed, M., & Deveci, M. (2024). Topological numbers of fuzzy soft graphs and their application. Information Sciences, 667, 120468. https://doi.org/10.1016/j.ins.2024.120468

Koam, A. N., Azeem, M., Ahmad, A., & Masmali, I. (2024). Connection number-based molecular descriptors of skin cancer drugs. Ain Shams Engineering Journal, 15(6), 102750. https://doi.org/10.1016/j.asej.2024.102750

Singh, P., Sharma, S., Sharma, S. K., & Bhat V. K. (2021). Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 6(9), 9138-9153. https://doi.org/10.3934/math.2021531

Estrada-Moreno, A., Yero, I. G., & Rodríguez-Velázquez, J. A. (2021). On the (k,t)-metric dimension of graphs. The Computer Journal, 64(5), 707-720.

https://doi.org/org/10.1093/comjnl/bxaa009

Pirzada, S., & Aijaz M. (2021). On graphs with same metric and upper dimension. Discrete Mathematics, Algorithms and Applications, 13(2), 2150015.

https://doi.org/10.1142/S1793830921500154

Azeem, M., & Nadeem, M. F. (2021). Metric-based resolvability of polycyclic aromatic hydrocarbons. The European Physical Journal Plus, 136(4), 1-14. https://doi.org/10.1140/epjp/s13360-021-01399-8

Imran, S., Siddiqui, M. K., Imran, M., & Hussain, M. (2018). On metric dimensions of symmetric graphs obtained by rooted product. Mathematics, 6(10), 191. https://doi.org/10.3390/math6100191

Koam, A. N., Ahmad, A., Abdelhag, M. E., & Azeem, M. (2021). Metric and fault-tolerant metric dimension of hollow coronoid. IEEE Access, 9, 81527-81534. https://doi.org/10.1109/ACCESS.2021.3085584

Koam, A. N., Ahmad, A., Alatawi, M. S., Nadeem, M. F., & Azeem M. (2021). Computation of metric-based resolvability of quartz without pendant nodes. IEEE Access, 9, 151834-151840. https://doi.org/10.1109/ACCESS.2021.3126455

Anitha, K., Devi, R. A., Munir, M., Nisar, K. S. (2021). Metric dimension of rough graphs. International Journal of Nonlinear Analysis and Applications, 12, 1793-1806. https://doi.org/10.22075/IJNAA.2021.5891

Moscarini M. (2021). Computing a metric basis of a bipartite distance-hereditary graph. Theoretical Computer Science, 900, 20-24. https://doi.org/10.1016/j.tcs.2021.11.015

Koam, A., N., Haider, A., Ansari M. A. (2019). Pseudo-metric on KU-algebras. The Korean Journal of Mathematics, 27(1), 131-140. https://doi.org/10.11568/kjm.2019.27.1.131

Ahmad, A., Bača, M., & Sultan, S. (2019). On the minimal doubly resolving sets of Harary graph. Acta Mathematica Universitatis Comenianae, 89(1), 123-129.

Ahmad, A., Bača, M., & Sultan, S. (2020). Computing the metric dimension of kayak paddles graph and cycles with chord. Proyecciones (Antofagasta), 39(2), 287-300. https://doi.org/10.22199/issn.0717-6279-2020-02-0018

Ahmad, A., Bav, M., & Sultan S. (2018). Minimal doubly resolving sets of Necklace graph. Mathematical report, 20(70), 123-129.

Vetrik, T., & Ahmad A. (2017). Computing the metric dimension of the categorial product of graphs. International Journal of Computer Mathematics, 94(2), 363-371. https://doi.org/10.1080/00207160.2015.1109081

Ahmad, A., & Sultan, S. (2017). On minimal doubly resolving sets of circulant graphs. Acta Mechanica Slovaca, 20 (1), 6-11. https://doi.org/10.21496/ams.2017.002

Raza, H., Hayat, S., & Pan, X. F. (2019). On the fault-tolerant metric dimension of certain interconnection networks. Journal of Applied Mathematics and Computing, 60, 517-535. https://doi.org/10.1007/s12190-018-01225-y

Raza, H., Hayat, S., Imran, M., & Pan, X. F. (2019). Fault-tolerant resolvability and extremal structures of graphs. Mathematics, 7(1), 78. https://doi.org/10.3390/math7010078

Raza, H., Hayat, S., & Pan, X. F. (2018). On the fault-tolerant metric dimension of convex polytopes. Applied Mathematics and Computing, 339, 172-185. https://doi.org/10.1016/j.amc.2018.07.010

Koam, A. N. A., Ahmad, A., Ali, S., Jamil, M.K., Azeem, M. (2024). Double Edge Resolving Set and Exchange Property for Nanosheet Structure, Heliyon, 10(5), e26992, https://doi.org/10.1016/j.heliyon.2024.e26992

Bukhari, S., Jamil, M.K., Azeem, M., Swaray, S. (2024). Honeycomb Rhombic Torus Vertex-Edge Based Resolvability Parameters and its Application in Robot Navigation, IEEE Access, 12, 23751 – 23757. https://doi.org/10.1109/ACCESS.2024.3359916

Azeem, M. (2023). Cycle-Super Magic Labeling of Polyomino Linear and Zig-Zag Chains. Journal of Operations Intelligence, 1(1), 67-81. https://doi.org/10.31181/jopi1120235

Shanmukha, M. C., Ismail, R., Gowtham, K. J., Usha, A., Azeem, M., & Al-Sabri, E. H. A. (2023). Chemical applicability and computation of K-Banhatti indices for benzenoid hydrocarbons and triazine-based covalent organic frameworks. Scientific Reports, 13(1), 17743. https://doi.org/10.1038/s41598-023-45061-y

Slater P. J. (1975). Leaves of trees: Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congressus Numerantium, 14, 549-559.

Harary, F., & Melter R. A. (1976). On the metric dimension of a graph. Ars Combinatoria, 2, 191-195.

Siddiqui, H. M. A., Hayat, S., Khan, A., Imran, M., Razzaq, A., & Liu J. B. (2019). Resolvability and faulttolerant resolvability structures of convex polytopes. Theoretical Computer Science. 796(3), 114-128. https://doi.org/10.1016/j.tcs.2019.08.032

Raza, H., Hayat, S., & Pan, X. F. (2019). On the fault-tolerant metric dimension of certain interconnection networks. Journal of Applied Mathematics and Computing, 60, 517-535. https://doi.org/10.1007/s12190-018-01225-y

Hayat, S., Khan, A., Malik, M. Y. H., Imran, M., & Siddiqui, M. K. (2020). Fault-tolerant metric dimension of interconnection networks. IEEE Access, 8, 145435-145445. https://doi.org/10.1109/ACCESS.2020.3014883

Azeem, M., Jamil, M. K., & Shang, Y. (2023). Notes on the localization of generalized hexagonal cellular networks. Mathematics, 11(4), 844. https://doi.org/10.3390/math11040844

Bukhari, S., Jamil, M. K., Azeem, M., & Swaray, S. (2023). Patched network and its vertex-edge metric-based dimension. Ieee Access, 11, 4478-4485. https://doi.org/10.1109/ACCESS.2023.3235398

Shanmukha, M. C., Usha, A., Basavarajappa, N. S., & Shilpa, K. C. (2021). Graph entropies of porous graphene using topological indices. Computational and Theoretical Chemistry, 1197, 113142. https://doi.org/10.1016/j.comptc.2021.113142

Afzal Siddiqui, H. M., Nadeem, M. F., Azeem, M., Arshad, M. A., Haider, A., & Malik, M. A. (2022). Topological properties of supramolecular chain of different complexes of N-Salicylidene-L-Valine. Polycyclic Aromatic Compounds, 42(9), 6185-6198. https://doi.org/10.1080/10406638.2021.1980060

Sozen, E. O., & Eren, Å. (2017). Modules that Have a δ-Supplement in Every Extension. European Journal of Pure and Applied Mathematics, 10(4), 730-738.

Iqbal, A., Ali, S., & Ahmad, I. (2012). On geodesic E-convex sets, geodesic E-convex functions and E-epigraphs. Journal of Optimization Theory and Applications, 155, 239-251. https://doi.org/10.1007/s10957-012-0052-3

Chartrand, G., Salehi, E., & Zhang P. (2000). The partition dimension of graph. Aequationes Mathematicae, 59, 45-54. https://doi.org/10.1007/PL00000127

Chartrand, G., Eroh, L., Johnson, M. A., & Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3), 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0

Khuller, S., Raghavachari, B., & Rosenfeld A. (1996). Landmarks in graphs. Discrete Applied Mathematics, 70(3), 217-229, https://doi.org/10.1016/0166-218X(95)00106-2

Sebő, A., & Tannier, E. (2004). On metric generators of graphs. Mathematics of Operations Research, 29(2), 383-393. https://doi.org/10.1287/moor.1030.0070

Nadeem, M. F., Hassan, M., Azeem, M., Ud-Din Khan, S., Shaik, M. R., Sharaf, M. A., Abdelgawad, A., & Awwad, E. M. (2021). Application of resolvability technique to investigate the different polyphenyl structures for polymer industry. Journal of Chemistry, 2021(1), 6633227. https://doi.org/10.1155/2021/6633227

Ahmad, A., Koam, A. N., Siddiqui, M. H. F., & Azeem, M. (2022). Resolvability of the starphene structure and applications in electronics. Ain Shams Engineering Journal, 13(2), 101587. https://doi.org/10.1016/j.asej.2021.09.014

Cáceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., & Wood, D. R. (2007). On the metric dimension of cartesian products of graphs. SIAM journal on discrete mathematics, 21(2), 423-441. https://doi.org/10.1137/050641867

Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal'ak, M., & Ram, L. S. (2006). Network discovery and verification. IEEE Journal on selected areas in communications, 24(12), 2168-2181. https://doi.org/10.1109/JSAC.2006.884015

Chvatal V. (1983). Mastermind. Combinatorica, 3, 325-329. https://doi.org/10.1007/BF02579188

Melter, R. A., & Tomescu, I. (1984). Metric bases in digital geometry. Computer vision, graphics, and image Processing, 25(1), 113-121. https://doi.org/10.1016/0734-189X(84)90051-3

Hernando, C., Mora, M., Slater, P. J., & Wood, D. R. (2008). Fault-tolerant metric dimension of graphs. Convexity in discrete structures, 5, 81-85.

Published

2024-08-04

How to Cite

Azeem, M., & Jamil, M. K. (2024). On the Anticancer Drug Structures and Their Locating Numbers. Spectrum of Operational Research, 1(1), 44-63. https://doi.org/10.31181/sor1120245