An Expert Opinion-Based Soft Computing Framework for Comparing Nanotechnologies used in Agriculture

Authors

DOI:

https://doi.org/10.31181/sor4156

Keywords:

Sustainable Agriculture, Interval-valued p, q – Quasirung Orthopair Fuzzy Number, CIMAS, WISP

Abstract

Nanotechnology (NT) has revolutionized agriculture through precision farming, environmental protection, enhanced nutrient delivery and crop production, and effective pesticide control. The purpose of the present research is twofold. First, it aims to develop a novel soft computing model for multi-criteria decision analysis (MCDA) by proposing an Interval-valued p, q–Quasirung Orthopair Fuzzy Number (p, q–IVQROFN)-based hybrid MCDA framework. The CIMAS (Criteria Importance Assessment) method is employed to determine the weights of the criteria, while the WISP method ranks the alternatives. This paper introduces a modification to the WISP method by aggregating four distinct utility degrees using the Heron Mean. The second objective is to apply the proposed framework to compare leading NTs used in agriculture. An expert group decision-making approach is developed to evaluate eight NTs, guided by the theoretical frameworks of TOE (Technology–Organization–Environment) and TRI (Technology Readiness Index). Alternatives are ranked using experts’ ratings within the proposed framework, followed by a risk assessment using the Fine–Kinney framework (FKF) to identify potential vulnerabilities. The NTs are compared based on both performance and risk profiles. The results indicate that nano-sensors (NT5), nano-fungicides (NT3), nano-fertilizers (NT2), nano-clays (NT6), and nano-herbicides (NT4) rank as the top nanotechnologies for agricultural applications. The reliability of the proposed model is confirmed through comparisons with other MCDA methods and sensitivity analysis. Overall, this paper presents a robust and practical methodology for sustainable agricultural planning.

Downloads

Download data is not yet available.

Author Biography

  • Sanjib Biswas, Amity Business School, Amity University Kolkata, Major Arterial Road, AA II, Newtown, West Bengal 700135, India

    Sanjib Biswas, Ph.D. (NIT, Durgapur), teaches Decision Sciences & Operations Management at Amity University Kolkata. He has two decades of experience of working in Industry and Academics. He has published/presented 40+ papers in Scopus/ SCI indexed journals such as Information Sciences, Annals of Operations Research, FUSME and others. He is a regular reviewer of 20+ reputed Scopus/SCI indexed journals like Applied Soft Computing, Technology Forecasting and Social Change, Engineering Applications with Artificial Intelligence, DMAME among others and editorial board member of eminent journals including Reports in Mechanical Engineering, Decision Making Advances, Theoretical and Applied Computational Intelligence and others. His research interests include SCM, MCDM, Soft Computing, Technology Management and Sustainability.

References

[1] Whatmore, R. W. (2006). Nanotechnology—what is it? Should we be worried? Occupational Medicine, 56(5), 295–299. https://doi.org/10.1093/occmed/kql050

[2] Bhushan, B. (2017). Introduction to nanotechnology. In Springer handbook of nanotechnology (pp. 1–19). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_1

[3] Nummelin, S., Kommeri, J., Kostiainen, M. A., & Linko, V. (2018). Evolution of structural DNA nanotechnology. Advanced Materials, 30(24), 1703721. https://doi.org/10.1002/adma.201703721

[4] Hung, S. W., Wang, A. P., & Chang, C. C. (2012, July). Exploring the evolution of nano technology. In 2012 Proceedings of PICMET'12: Technology Management for Emerging Technologies (pp. 2598–2604). IEEE.

[5] Roco, M. C. (2011). The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, 13, 427–445. https://doi.org/10.1007/s11051-010-0192-z

[6] Sharma, P. K., Dorlikar, S., Rawat, P., Malik, V., Vats, N., Sharma, M., ... & Kaushik, A. K. (2021). Nanotechnology and its application: a review. Nanotechnology in Cancer Management, 1–33. https://doi.org/10.1016/B978-0-12-818154-6.00010-X

[7] Vijayakumar, M. D., Surendhar, G. J., Natrayan, L., Patil, P. P., Ram, P. B., & Paramasivam, P. (2022). Evolution and recent scenario of nanotechnology in agriculture and food industries. Journal of Nanomaterials, 2022(1), 1280411. https://doi.org/10.1155/2022/1280411

[8] Hussein, A. K. (2015). Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renewable and Sustainable Energy Reviews, 42, 460–476. https://doi.org/10.1016/j.rser.2014.10.027

[9] Autumn, K., & Gravish, N. (2008). Gecko adhesion: evolutionary nanotechnology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1870), 1575–1590. https://doi.org/10.1098/rsta.2007.2173

[10] Malik, S., Muhammad, K., & Waheed, Y. (2023). Nanotechnology: a revolution in modern industry. Molecules, 28(2), 661. https://doi.org/10.3390/molecules28020661

[11] Iavicoli, I., Leso, V., Beezhold, D. H., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96–111. https://doi.org/10.1016/j.taap.2017.05.025

[12] Garg, S., Rumjit, N. P., & Roy, S. (2024). Smart agriculture and nanotechnology: Technology, challenges, and new perspective. Advanced Agrochem, 3(2), 115–125. https://doi.org/10.1016/j.aac.2023.11.001

[13] Thakur, N., & Yadav, A. N. (2025). Nanotechnology in agriculture: a review on precision farming and sustainable crop production. BioNanoScience, 15(2), 243. https://doi.org/10.1007/s12668-025-01861-2

[14] Neme, K., Nafady, A., Uddin, S., & Tola, Y. B. (2021). Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon, 7(12). https://doi.org/10.1016/j.heliyon.2021.e08539

[15] Miguel-Rojas, C., & Pérez-de-Luque, A. (2023). Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture. Emerging Topics in Life Sciences, 7(2), 229–238. https://doi.org/10.1042/ETLS20230070

[16] Mgadi, K., Ndaba, B., Roopnarain, A., Rama, H., & Adeleke, R. (2024). Nanoparticle applications in agriculture: overview and response of plant-associated microorganisms. Frontiers in Microbiology, 15, 1354440. https://doi.org/10.3389/fmicb.2024.1354440

[17] Chaturvedi, A., Tripathi, D., & Ranjan, R. (2025). Nano-enabled biosensors in early detection of plant diseases. Frontiers in Nanotechnology, 7, 1545792. https://doi.org/10.3389/fnano.2025.1545792

[18] Santos, P. A., Biraku, X., Nielsen, E., Ozketen, A. C., Ozketen, A. A., & Hakki, E. E. (2025). Agricultural nanotechnology for a safe and sustainable future: current status, challenges, and beyond. Journal of the Science of Food and Agriculture, 105(6), 3159–3169. https://doi.org/10.1002/jsfa.13922

[19] Chavula, P., & Kayusi, F. (2025). Systematic Review on the Application of Nanotechnology and Artificial Intelligence in Agricultural Economics. LatIA, (3), 322. https://doi.org/10.62486/latia2025322

[20] Ali, S., Ahmad, N., Dar, M. A., Manan, S., Rani, A., Alghanem, S. M. S., ... & Zhu, D. (2023). Nano-agrochemicals as substitutes for pesticides: prospects and risks. Plants, 13(1), 109. https://doi.org/10.3390/plants13010109

[21] Kekeli, M. A., Wang, Q., & Rui, Y. (2025). The Role of Nano-Fertilizers in Sustainable Agriculture: Boosting Crop Yields and Enhancing Quality. Plants, 14(4), 554. https://doi.org/10.3390/plants14040554

[22] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

[23] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.

[24] Yager, R. R. (2016). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604004

[25] Yager, R. R., Alajlan, N., & Bazi, Y. (2018). Aspects of generalized orthopair fuzzy sets. International Journal of Intelligent Systems, 33(11), 2154–2174. https://doi.org/10.1002/int.22008

[26] Seikh, M. R., & Mandal, U. (2022). Multiple attribute group decision making based on quasirung orthopair fuzzy sets: Application to electric vehicle charging station site selection problem. Engineering Applications of Artificial Intelligence, 115, 105299. https://doi.org/10.1016/j.engappai.2022.105299

[27] Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets (pp. 139–177). Physica-Verlag HD.

[28] Aytekin, A., Okoth, B. O., Korucuk, S., Mishra, A. R., Memiş, S., Karamaşa, Ç., & Tirkolaee, E. B. (2023). Critical success factors of lean six sigma to select the most ideal critical business process using q-ROF CRITIC-ARAS technique: Case study of food business. Expert Systems with Applications, 224, 120057. https://doi.org/10.1016/j.eswa.2023.120057

[29] Joshi, B. P., Singh, A., Bhatt, P. K., & Vaisla, K. S. (2018). Interval valued q-rung orthopair fuzzy sets and their properties. Journal of Intelligent & Fuzzy Systems, 35(5), 5225–5230. https://doi.org/10.3233/JIFS-169806

[30] Wang, J., Gao, H., Wei, G., & Wei, Y. (2019). Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry, 11(1), 56. https://doi.org/10.3390/sym11010056

[31] Gao, H., Ran, L., Wei, G., Wei, C., & Wu, J. (2020). VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products. International Journal of Environmental Research and Public Health, 17(2), 525. https://doi.org/10.3390/ijerph17020525

[32] Korucuk, S., Aytekın, A., & Moslem, S. (2024). A novel interval-valued-q-rung orthopair fuzzy-additive ratio assessment model for evaluating logistics service quality. IEEE Access, 12, 55726–55743. https://doi.org/10.1109/ACCESS.2024.3384874

[33] Rong, Y., Yu, L., Liu, Y., Simic, V., Pamucar, D., & Garg, H. (2024). A novel failure mode and effect analysis model based on extended interval-valued q-rung orthopair fuzzy approach for risk analysis. Engineering Applications of Artificial Intelligence, 136, 108892. https://doi.org/10.1016/j.engappai.2024.108892

[34] Zheng, Y., Qin, H., & Ma, X. (2024). A novel group decision making method based on CoCoSo and interval-valued Q-rung orthopair fuzzy sets. Scientific Reports, 14(1), 6562. https://doi.org/10.1038/s41598-024-56922-5

[35] Bošković, S., Jovčić, S., Simic, V., Švadlenka, L., Dobrodolac, M., & Bacanin, N. (2023). A new criteria importance assessment (CIMAS) method in multi-criteria group decision-making: Criteria evaluation for supplier selection. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME230730050B

[36] Stanujkic, D., Popovic, G., Karabasevic, D., Meidute-Kavaliauskiene, I., & Ulutaş, A. (2021). An integrated simple weighted sum product method—WISP. IEEE Transactions on Engineering Management, 70(5), 1933–1944. https://doi.org/10.1109/TEM.2021.3075783

[37] Tornatzky, L., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.

[38] Nguyen, T. H., Le, X. C., & Vu, T. H. L. (2022). An extended technology-organization-environment (TOE) framework for online retailing utilization in digital transformation: Empirical evidence from Vietnam. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), 200. https://doi.org/10.3390/joitmc8040200

[39] Xu, D., Huang, B., Shi, S., & Zhang, X. (2025). A Configurational Analysis of Green Development in Forestry Enterprises Based on the Technology–Organization–Environment (TOE) Framework. Forests, 16(5), 744. https://doi.org/10.3390/f16050744

[40] Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L. H., & Baral, M. M. (2023). Blockchain Technology for Supply Chains operating in emerging markets: an empirical examination of technology-organization-environment (TOE) framework. Annals of Operations Research, 327(1), 465–492. https://doi.org/10.1007/s10479-022-04801-5

[41] Malik, S., Chadhar, M., Vatanasakdakul, S., & Chetty, M. (2021). Factors affecting the organizational adoption of blockchain technology: Extending the technology–organization–environment (TOE) framework in the Australian context. Sustainability, 13(16), 9404. https://doi.org/10.3390/su13169404

[42] Adade, D., & de Vries, W. T. (2024). An extended TOE framework for local government technology adoption for citizen participation: insights for city digital twins for collaborative planning. Transforming Government: People, Process and Policy, 19(1), 53–73. https://doi.org/10.1108/TG-01-2024-0025

[43] Bhuiyan, M. R. I. (2024). Industry Readiness and Adaptation of Fourth Industrial Revolution: Applying the Extended TOE Framework. Human Behavior and Emerging Technologies, 2024(1), 8830228. https://doi.org/10.1155/hbe2/8830228

[44] Salah, O. H., & Ayyash, M. M. (2024). E-commerce adoption by SMEs and its effect on marketing performance: An extended of TOE framework with AI integration, innovation culture, and customer tech-savviness. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100183. https://doi.org/10.1016/j.joitmc.2023.100183

[45] Biswas, S., Pamucar, D., & Simic, V. (2024). Technology adaptation in sugarcane supply chain based on a novel p, q Quasirung Orthopair Fuzzy decision making framework. Scientific Reports, 14(1), 26486. https://doi.org/10.1038/s41598-024-75528-5

[46] Kumar, A., & Shankar, A. (2024). Building a sustainable future with enterprise metaverse in a data-driven era: A technology-organization-environment (TOE) perspective. Journal of Retailing and Consumer Services, 81, 103986. https://doi.org/10.1016/j.jretconser.2024.103986

[47] Bhat, M. A., Khan, S. T., Alkhwaldi, A. F., & Abdulmuhsin, A. A. (2025). Unlocking the potential: exploring the drivers behind blockchain and its influence on SMEs performance within TOE framework. The TQM Journal, (ahead-of-print). https://doi.org/10.1108/TQM-07-2024-0232

[48] Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307–320. https://doi.org/10.1177/109467050024001

[49] Salvador-Carulla, L., Woods, C., de Miquel, C., & Lukersmith, S. (2024). Adaptation of the technology readiness levels for impact assessment in implementation sciences: The TRL-IS checklist. Heliyon, 10(9). https://doi.org/10.1016/j.heliyon.2024.e29930

[50] Cruz-Cárdenas, J., Guadalupe-Lanas, J., Ramos-Galarza, C., & Palacio-Fierro, A. (2021). Drivers of technology readiness and motivations for consumption in explaining the tendency of consumers to use technology-based services. Journal of Business Research, 122, 217–225. https://doi.org/10.1016/j.jbusres.2020.08.054

[51] Kaushik, M. K., & Agrawal, D. (2021). Influence of technology readiness in adoption of e-learning. International Journal of Educational Management, 35(2), 483–495. https://doi.org/10.1108/IJEM-04-2020-0216

[52] Wijanarko, A., Syafitri, A., & Andreswari, D. (2024). Employing the Technology Readiness Index (TRI) to Evaluate Customer Readiness for Future Adoption of The Metaverse in Virtual Branch Digital Banking Services. Indonesian Journal of Computer Science and Engineering, 1(02), 41–45. https://doi.org/10.70656/ijcse.v1i02.109

[53] Kinney, G. F., & Wiruth, A. D. (1976). Practical risk analysis for safety management. Naval Weapons Center.

[54] Ayvaz, B., Tatar, V., Sağır, Z., & Pamucar, D. (2024). An integrated Fine-Kinney risk assessment model utilizing Fermatean fuzzy AHP-WASPAS for occupational hazards in the aquaculture sector. Process Safety and Environmental Protection, 186, 232–251. https://doi.org/10.1016/j.psep.2024.04.025

[55] Li, H., Wang, Y., Chong, D., Rajendra, D., & Skitmore, M. (2024). Fine-Kinney fuzzy-based occupational health risk assessment for Workers in different construction trades. Automation in Construction, 168, 105738. https://doi.org/10.1016/j.autcon.2024.105738

[56] Wang, Y., Wang, W., Deveci, M., & Yu, X. (2024). An integrated interval-valued spherical fuzzy Choquet integral based decision making model for prioritizing risk in Fine-Kinney. Engineering Applications of Artificial Intelligence, 127, 107437. https://doi.org/10.1016/j.engappai.2023.107437

[57] Feng, X., Shang, X., Xu, Y., & Wang, J. (2020). A method to multi-attribute decision-making based on interval-valued q-rung dual hesitant linguistic Maclaurin symmetric mean operators. Complex & Intelligent Systems, 6(3), 447–468. https://doi.org/10.1007/s40747-020-00141-8

[58] Garg, H. (2021a). A new possibility degree measure for interval‐valued q‐rung orthopair fuzzy sets in decision‐making. International Journal of Intelligent Systems, 36(1), 526–557. https://doi.org/10.1002/int.22308

[59] Garg, H. (2021b). New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process. Neural Computing and Applications, 33(20), 13937–13963. https://doi.org/10.1007/s00521-021-06036-0

[60] Garg, H., Ali, Z., & Mahmood, T. (2021). Algorithms for complex interval‐valued q‐rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS. Expert Systems, 38(1), e12609. https://doi.org/10.1111/exsy.12609

[61] Ali, G., Afzal, M., Asif, M., & Shazad, A. (2022). Attribute reduction approaches under interval-valued q-rung orthopair fuzzy soft framework. Applied Intelligence, 52, 8975–9000. https://doi.org/10.1007/s10489-021-02853-x

[62] Khan, S. A. R., Mathew, M., Dominic, P. D. D., & Umar, M. (2021). Evaluation and selection strategy for green supply chain using interval-valued q-rung orthopair fuzzy combinative distance-based assessment. Environment, Development and Sustainability, 24(9), 10633–10665. https://doi.org/10.1007/s10668-021-01876-1

[63] Wan, B., Zhang, X., Xiong, M., & Wang, Z. (2022). Interval‐Valued q‐Rung Orthopair Fuzzy QUALIFLEX Decision Analysis Method with Dombi Operators. Discrete Dynamics in Nature and Society, 2022(1), 4898098. https://doi.org/10.1155/2022/4898098

[64] Zhang, X., Dai, L., & Wan, B. (2023). NA operator-based interval-valued q-rung orthopair fuzzy PSI-COPRAS group decision-making method. International Journal of Fuzzy Systems, 25(1), 198–221. https://doi.org/10.1007/s40815-022-01375-z

[65] Ahemad, F., Mehlawat, M. K., & Gupta, P. (2023). A GRA approach to a MAGDM problem with interval-valued q-rung orthopair fuzzy information. Soft Computing, 27(21), 15793–15815. https://doi.org/10.1007/s00500-023-08822-5

[66] Ali, J., & Khan, Z. A. (2023). Interval-valued p, q-rung orthopair fuzzy exponential todim approach and its application to green supplier selection. Symmetry, 15(12), 2115. https://doi.org/10.3390/sym15122115

[67] Chen, S., Ren, J., Ye, K., & Li, F. (2024). A generalized interval-valued p, q Rung orthopair fuzzy Maclaurin symmetric mean and modified regret theory based sustainable supplier selection method. Scientific Reports, 14(1), 14942. https://doi.org/10.1038/s41598-024-64765-3

[68] Aytekin, A., & Korucuk, S. (2024). Assessing the innovation capacity of manufacturing firms in Ordu Province: A multi-criteria evaluation using CIMAS. J. Intell Manag. Decis, 3(4), 224–230. https://doi.org/10.56578/jimd030403

[69] Švadlenka, L., Bajec, P., Pivtorak, H., Bošković, S., Jovčić, S., & Dobrodolac, M. (2024). Risk Prioritization from the Crowd-Shipping Provider's Perspective using the CIMAS Method. Spectrum of Engineering and Management Sciences, 2(1), 234–246. https://doi.org/10.31181/sems21202430s

[70] Kara, K., Yalçın, G. C., Simic, V., Korkuç, Ç., Çiçek, İ., Afacan, E., & Pamucar, D. (2024a). An interval-valued spherical fuzzy CIMAS-WISP group decision-analytic model for blockchain platform selection in digital projects. Applied Soft Computing, 162, 111810. https://doi.org/10.1016/j.asoc.2024.111810

[71] Kara, K., Yalçın, G. C., Çetinkaya, A., Simic, V., & Pamucar, D. (2024b). A single-valued neutrosophic CIMAS-CRITIC-RBNAR decision support model for the financial performance analysis: A study of technology companies. *Socio-Economic Planning Sciences, 92*, 101851. https://doi.org/10.1016/j.seps.2024.101851

[72] Cui, H. (2025). Adaptive Triangular Linguistic Neutrosophic Cubic Fuzzy Sets for College English Blended Teaching Mode Evaluation Method. Neutrosophic Sets and Systems, 81(1), 24.

[73] Liu, W., & Lai, X. (2025). Integrating decision tools for efficient operations management through innovative approaches. Scientific Reports, 15(1), 16187. https://doi.org/10.1038/s41598-025-99022-8

[74] Joshi, M., Dixit, S., Nikhade, S. D., & Talodhikar, V. (2025). Solar Site Selection: A Novel Normalized Expert Strictness for Tailored Evaluation in Decision-Making (NESTED) Approach: Solar site selection: a novel normalized expert strictness. Journal of Scientific & Industrial Research (JSIR), 84(5), 567–574.

[75] Biswas, S., Biswas, B., & Mitra, K. (2025). A novel group decision making model to compare online shopping platforms. Spectrum of Decision Making and Applications, 2(1), 1–27. https://doi.org/10.31181/sdmap2120259

[76] Ulutaş, A., Stanujkic, D., Karabasevic, D., Popovic, G., & Novaković, S. (2022). Pallet truck selection with MEREC and WISP-S methods. *Strategic Management-International Journal of Strategic Management and Decision Support Systems in Strategic Management, 27*(4), 23–29. https://doi.org/10.5937/StraMan2200013U

[77] Ulutaş, A., Topal, A., Pamučar, D., Stević, Ž., Karabašević, D., & Popović, G. (2022). A new integrated multi-criteria decision-making model for sustainable supplier selection based on a novel grey WISP and grey BWM methods. Sustainability, 14(24), 16921. https://doi.org/10.3390/su142416921

[78] Karabašević, D., Ulutaş, A., Stanujkić, D., Saračević, M., & Popović, G. (2022). A new fuzzy extension of the simple WISP method. Axioms, 11(7), 332. https://doi.org/10.3390/axioms11070332

[79] Diniz, B. P., de Moura Pereira, D. A., dos Santos, M., Moreira, M. Â. L., de Moraes, A. B., Pereira, F. R. R., ... & Neto, J. C. (2024). New Approach to Choosing an Aircraft Carrier for Brazil from the AHP and WISP Multicriteria Decision Methods. Procedia Computer Science, 242, 544–551. https://doi.org/10.1016/j.procs.2024.08.102

[80] Rani, P., Mishra, A. R., Cavallaro, F., & Alrasheedi, A. F. (2024). Location selection for offshore wind power station using interval-valued intuitionistic fuzzy distance measure-RANCOM-WISP method. Scientific Reports, 14(1), 4706. https://doi.org/10.1038/s41598-024-54929-6

[81] Görçün, Ö. F., Ulutaş, A., Topal, A., & Ecer, F. (2024). Telescopic forklift selection through a novel interval-valued Fermatean fuzzy PIPRECIA–WISP approach. Expert Systems with Applications, 255, 124674. https://doi.org/10.1016/j.eswa.2024.124674

[82] Cao, B., Jin, Y., Ulutaş, A., Topal, A., Stević, Ž., Karabasevic, D., & Sava, C. (2024). A new integrated rough multi-criteria decision-making model for enterprise resource planning software selection. PeerJ Computer Science, 10, e2096. http://dx.doi.org/10.7717/peerj-cs.2096

[83] Bulut, T. (2025). Evaluation of Turkish Health System Capacity at Provincial Level by WISP Method Based on Weighting Methods. Verimlilik Dergisi, 59(1), 143–166. https://doi.org/10.51551/verimlilik.1549245

[84] Chaithanya G, N., & Deepak Rao, N. (2023). Nano-Priming: An Innovative Tool for Seed Quality Enhancement for Sustainable Agriculture. International Journal of Agricultural Invention, 8(2), 170–181. https://doi.org/10.46492/ijai/2023.8.2.5

[85] Khan, M. N., Li, Y., Fu, C., Hu, J., Chen, L., Yan, J., Khan, Z., Wu, H., & Li, Z. (2022). CeO2 Nanoparticles Seed Priming Increases Salicylic Acid Level and ROS Scavenging Ability to Improve Rapeseed Salt Tolerance. Global Challenges, 6(7). https://doi.org/10.1002/gch2.202200025

[86] El-Sonbaty, A. (2021). Effect of Foliar Application of N P K Nanoparticle Fertilization and Soil Addition of Mineral N P K Fertilization as Combined Treatments on Soil Fertility and Wheat Plant Performance. Journal of Soil Sciences and Agricultural Engineering, 12(8), 567–572. https://doi.org/10.21608/jssae.2021.196952

[87] Wei, J., Liu, L., Wei, Z., Qin, Q., Bai, Q., Zhao, C., Zhang, S., & Wang, H. (2025). Silicon Nano-Fertilizer-Enhanced Soybean Resilience and Yield Under Drought Stress. Plants, 14(5), 751. https://doi.org/10.3390/plants14050751

[88] Goyal, V. K., Rani, D., Arora, R., Mehrotra, S., Deng, C., & Wang, Y. (2023). Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. Plants, 12(21), 3744. https://doi.org/10.3390/plants12213744

[89] Wang, D., Saleh, N. B., Byro, A., Zepp, R. G., Sahle‐Demessie, E., Luxton, T. P., Ho, K. T., Burgess, R. M., Flury, M., White, J. C., & Su, C. (2022). Nano-Enabled Pesticides for Sustainable Agriculture and Global Food Security. Nature Physics, 17(4), 347–360. https://doi.org/10.1038/s41565-022-01082-8

[90] Wang, Y., Feng, L. J., Sun, X. D., Zhang, M., Duan, J. L., Xiao, F., ... & Yuan, X. Z. (2023). Incorporation of selenium derived from nanoparticles into plant proteins in vivo. ACS Nano, 17(16), 15847–15856. https://doi.org/10.1021/acsnano.3c03739

[91] Lowry, G. V., Avellan, A., & Gilbertson, L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 14(6), 517–522. https://doi.org/10.1038/s41565-019-0461-7

[92] Rodriguez-Seijo, A., Santas-Miguel, V., Arenas-Lago, D., Arias-Estevez, M., & Perez-Rodriguez, P. (2025). Use of nanotechnology for safe agriculture and food production: Challenges and limitations. Pedosphere, 35(1), 20–32. https://doi.org/10.1016/j.pedsph.2024.09.005

[93] Mehejabin, F., Musharrat, A., Ahmed, S. F., Kabir, Z., Khan, T. Y., & Saleel, C. A. (2024). Sustainable Biofuel Production Utilizing Nanotechnology: Challenges and Potential Solutions. GCB Bioenergy, 16(10), e70001. https://doi.org/10.1111/gcbb.70001

[94] Bošković, S., Švadlenka, L., Jovčić, S., Simic, V., Dobrodolac, M., & Elomiya, A. (2024). Sustainable propulsion technology selection in penultimate mile delivery using the FullEX-AROMAN method. *Socio-Economic Planning Sciences, 95*, 102013. https://doi.org/10.1016/j.seps.2024.102013

[95] Krishnan, A. R. (2022). Past efforts in determining suitable normalization methods for multi-criteria decision-making: A short survey. Frontiers in Big Data, 5, 990699. https://doi.org/10.3389/fdata.2022.990699

[96] Biswas, S., Chatterjee, P., & Zavadskas, E. K. (2025). PRASIAS: A New Preference Ranking Model for Comparing Organizational Performance under Disruption. International Journal of Information Technology & Decision Making. https://doi.org/10.1142/S0219622025500208

[97] Chaudhuri, T., Mitra, S., Guha, B., Biswas, S., & Kumar, P. (2023). CSR Contributions for environmental sustainability: A comparison of private banks in emerging market. Decision Making: Applications in Management and Engineering, 6(2), 747–771. https://doi.org/10.31181/dmame622023852

[98] Puška, A., Štilić, A., Nedeljković, M., Božanić, D., & Biswas, S. (2023). Integrating fuzzy rough sets with LMAW and MABAC for green supplier selection in agribusiness. Axioms, 12(8), 746. https://doi.org/10.3390/axioms12080746

[99] Biswas, S., Pamucar, D., Raj, A., & Kar, S. (2023). A proposed q-Rung Orthopair Fuzzy-based decision support system for comparing marketing automation modules for higher education admission. In Computational Intelligence for Engineering and Management Applications: Select Proceedings of CIEMA 2022 (pp. 885–912). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-8493-8_66

[100] Biswas, S. (2024). A fuzzy compromise solution framework for assessing the early effect of COVID-19 on global stock indices. Computational Algorithms and Numerical Dimensions, 3(4), 252–276. https://doi.org/10.22105/cand.2024.475801.1108

[101] Biswas, S., & Joshi, N. (2023). A performance based ranking of initial public offerings (IPOs) in India. Journal of Decision Analytics and Intelligent Computing, 3(1), 15–32. https://doi.org/10.31181/10023022023b

[102] Biswas, B., Biswas, S., Pamucar, D., & Simic, V. (2025). A Novel Intuitionistic Fuzzy based Computing Model for Unravelling Key Attributes of Service Quality for Higher Education Management. Technology in Society, 83, 102982. https://doi.org/10.1016/j.techsoc.2025.102982

[103] Chaki, M. R., Biswas, S., Guha, B., Pamucar, D., & Bandyopadhyay, G. (2025). Introspecting the childhood intrinsic interests of the HR professionals: an intuitionistic fuzzy decision analysis framework. Kybernetes. ahead-of-print. https://doi.org/10.1108/K-02-2024-0443

[104] Biswas, S., Sanyal, A., Chouwdhury, A. R., & De, H. (2025). A Soft Computing Approach for Investigating the Dominance of Femluencing and Brand Evangelism on Customers’ Purchase Intentions. Computer and Decision Making: An International Journal, 2, 645–670. https://doi.org/10.59543/comdem.v2i.14215

[105] Biswas, S., Sanyal, A., & Pamucar, D. (2025). Students’ Perceptions About the Webinars: An Intuitionistic Fuzzy Force Field Analysis. Spectrum of Operational Research, 2(1), 113–133. https://doi.org/10.31181/sor21202513

Published

2025-08-12

Issue

Section

Articles

How to Cite

Biswas, S., Bhattacharjee, S., Biswas, B., Mitra, K., & Khawas, N. (2025). An Expert Opinion-Based Soft Computing Framework for Comparing Nanotechnologies used in Agriculture. Spectrum of Operational Research, 4(1), 1-39. https://doi.org/10.31181/sor4156